Electrical conductivity enhancement of chopped carbon fiber-reinforced epoxy composite bipolar plate for proton exchange membrane fuel cells

IF 2.7 3区 化学 Q2 POLYMER SCIENCE Journal of Applied Polymer Science Pub Date : 2024-11-06 DOI:10.1002/app.56421
Iesti Hajar Hanapi, Siti Kartom Kamarudin, Azran Mohd Zainoodin, Mohd Shahbudin Masdar, Siti Radiah Mohd Kamarudin, Nabilah Afiqah Mohd Radzuan, Mahnoush Beygisangchin, Zulfirdaus Zakaria
{"title":"Electrical conductivity enhancement of chopped carbon fiber-reinforced epoxy composite bipolar plate for proton exchange membrane fuel cells","authors":"Iesti Hajar Hanapi,&nbsp;Siti Kartom Kamarudin,&nbsp;Azran Mohd Zainoodin,&nbsp;Mohd Shahbudin Masdar,&nbsp;Siti Radiah Mohd Kamarudin,&nbsp;Nabilah Afiqah Mohd Radzuan,&nbsp;Mahnoush Beygisangchin,&nbsp;Zulfirdaus Zakaria","doi":"10.1002/app.56421","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the development of chopped carbon fiber (CCF)-reinforced epoxy (EP)/graphite (G) composite bipolar plates (BPs) using a one-step compression molding process. The primary objective was to fabricate CCF-reinforced EP/G BPs to enhance their electrical conductivity performance by evaluating the electrical conductivity and compactness of the plate among expanded graphite (EG), carbon black (CB) Vulcan, a combination of EG and CB Vulcan, and CB Ensaco. The results indicated that the EG exhibited the highest electrical conductivity of 9.3 S cm<sup>−1</sup> and compactness due to the low surface area. Consequently, CCF-reinforced EP/G/EG was selected for further optimization using response surface methodology (RSM) to analyze the parameters of EG composition, CCF composition, and temperature for optimizing electrical conductivity and porosity. The optimum conductivity and porosity of the CCF-reinforced EP/G/EG reached 22.7 S cm<sup>−1</sup> and 9.84% with EG composition, CCF composition, and temperature of 7.56 wt.%, 6.63 wt.%, and 186°C, respectively. After optimization, EP/G/EG was connected to a circuit to light up a bulb. It showed a substantial improvement in illumination compared with the samples before optimization. Therefore, the use of CCF-reinforced EP/G/EG with one-step compression molding has proven highly successful for converting energy in renewable energy applications, showcasing exceptional performance.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56421","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the development of chopped carbon fiber (CCF)-reinforced epoxy (EP)/graphite (G) composite bipolar plates (BPs) using a one-step compression molding process. The primary objective was to fabricate CCF-reinforced EP/G BPs to enhance their electrical conductivity performance by evaluating the electrical conductivity and compactness of the plate among expanded graphite (EG), carbon black (CB) Vulcan, a combination of EG and CB Vulcan, and CB Ensaco. The results indicated that the EG exhibited the highest electrical conductivity of 9.3 S cm−1 and compactness due to the low surface area. Consequently, CCF-reinforced EP/G/EG was selected for further optimization using response surface methodology (RSM) to analyze the parameters of EG composition, CCF composition, and temperature for optimizing electrical conductivity and porosity. The optimum conductivity and porosity of the CCF-reinforced EP/G/EG reached 22.7 S cm−1 and 9.84% with EG composition, CCF composition, and temperature of 7.56 wt.%, 6.63 wt.%, and 186°C, respectively. After optimization, EP/G/EG was connected to a circuit to light up a bulb. It showed a substantial improvement in illumination compared with the samples before optimization. Therefore, the use of CCF-reinforced EP/G/EG with one-step compression molding has proven highly successful for converting energy in renewable energy applications, showcasing exceptional performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短切碳纤维增强环氧复合材料双极板增强质子交换膜燃料电池电导率的研究
本研究采用一步压缩成型工艺,研究了短切碳纤维(CCF)增强环氧树脂(EP)/石墨(G)复合材料双极板(BPs)的开发。主要目的是通过评估膨胀石墨 (EG)、炭黑 (CB) Vulcan、EG 和 CB Vulcan 组合以及 CB Ensaco 的导电性和板的致密性,制造 CCF 增强 EP/G BP,以提高其导电性能。结果表明,EG 的导电率最高,为 9.3 S cm-1,由于表面积较小,其密实度也最高。因此,选择了 CCF 增强 EP/G/EG 作为进一步优化的对象,使用响应面方法(RSM)分析 EG 成分、CCF 成分和温度等参数,以优化导电率和孔隙率。在 EG 成分、CCF 成分和温度分别为 7.56 wt.%、6.63 wt.% 和 186°C 时,CCF 增强 EP/G/EG 的最佳导电率和孔隙率分别达到 22.7 S cm-1 和 9.84%。经过优化后,EP/G/EG 被连接到电路中以点亮灯泡。与优化前的样品相比,其照明效果有了显著改善。因此,使用 CCF 增强 EP/G/EG 进行一步压塑成型已被证明在可再生能源应用的能量转换方面非常成功,表现出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
期刊最新文献
Editorial Board, Aims & Scope, Table of Contents Editorial Board, Aims & Scope, Table of Contents Editorial Board, Aims & Scope, Table of Contents RETRACTION: Effect of Surface Modified WO3 Nanoparticle on the Epoxy Coatings for the Adhesive and Anticorrosion Properties of Mild Steel RETRACTION: Effects of Newly Synthesized Nanocomposites Containing Multifunctionalized Silicon Nitride Nanoparticles: A Study on Structural, Thermal, Electrochemical, Mechanical, Morphological, Water Repellent Properties for Aerospace Components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1