Review of 3D-Printed Titanium-Based Implants: Materials and Post-Processing

IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL ChemBioEng Reviews Pub Date : 2024-11-07 DOI:10.1002/cben.202400032
Dr. Yasi Li, Prof. Fengtao Wang
{"title":"Review of 3D-Printed Titanium-Based Implants: Materials and Post-Processing","authors":"Dr. Yasi Li,&nbsp;Prof. Fengtao Wang","doi":"10.1002/cben.202400032","DOIUrl":null,"url":null,"abstract":"<p>Implants are essential in medical treatments, as they offer restored function, quality of life enhancement, and long-term solutions. The global demand for implants is increasing due to the aging population, medical innovation, and improved medical payment capacity. 3D printing, also known as additive manufacturing, has revolutionized the fabrication of implants due to its ability to produce complex geometries and customizable designs. The superior biocompatibility, corrosion resistance, and mechanical properties of titanium (Ti) and its alloys make them ideal and common for orthopedic and dental implants. Materials are the basis of 3D-printed implants. Ti-based materials for 3D printing are summarized, including commercial pure titanium, binary Ti alloys, ternary Ti alloys, quaternary Ti alloys, and multicomponent Ti alloys. Post-processing is necessary to ensure the desired performance of 3D-printed implants. Post-processing methods for 3D-printed implants are reviewed from the perspective of improving the performance of the mechanical property, osseointegrative property, antibacterial property, and multiple properties. In this review, the published literatures related to the materials and post-processing of 3D-printed Ti-based implants are collected and discussed. The current challenges and future trends are also analyzed. It is expected to provide a basis for the application of 3D-printed Ti-based implants.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202400032","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Implants are essential in medical treatments, as they offer restored function, quality of life enhancement, and long-term solutions. The global demand for implants is increasing due to the aging population, medical innovation, and improved medical payment capacity. 3D printing, also known as additive manufacturing, has revolutionized the fabrication of implants due to its ability to produce complex geometries and customizable designs. The superior biocompatibility, corrosion resistance, and mechanical properties of titanium (Ti) and its alloys make them ideal and common for orthopedic and dental implants. Materials are the basis of 3D-printed implants. Ti-based materials for 3D printing are summarized, including commercial pure titanium, binary Ti alloys, ternary Ti alloys, quaternary Ti alloys, and multicomponent Ti alloys. Post-processing is necessary to ensure the desired performance of 3D-printed implants. Post-processing methods for 3D-printed implants are reviewed from the perspective of improving the performance of the mechanical property, osseointegrative property, antibacterial property, and multiple properties. In this review, the published literatures related to the materials and post-processing of 3D-printed Ti-based implants are collected and discussed. The current challenges and future trends are also analyzed. It is expected to provide a basis for the application of 3D-printed Ti-based implants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3d打印钛基植入物的综述:材料和后处理
植入物在医学治疗中是必不可少的,因为它们可以恢复功能,提高生活质量,并提供长期解决方案。由于人口老龄化、医疗创新和医疗支付能力的提高,全球对植入物的需求正在增加。3D打印,也被称为增材制造,由于其能够生产复杂的几何形状和可定制的设计,已经彻底改变了植入物的制造。钛(Ti)及其合金优越的生物相容性、耐腐蚀性和机械性能使其成为骨科和牙科植入物的理想和常用材料。材料是3d打印植入物的基础。概述了用于3D打印的钛基材料,包括商用纯钛、二元钛合金、三元钛合金、四元钛合金和多组分钛合金。后处理是必要的,以确保所需的性能的3d打印植入物。从提高3d打印种植体的力学性能、骨结合性能、抗菌性能和多种性能等方面综述了3d打印种植体的后处理方法。本文收集并讨论了3d打印钛基植入物材料及后处理的相关文献。分析了当前面临的挑战和未来的发展趋势。有望为3d打印钛基植入物的应用提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemBioEng Reviews
ChemBioEng Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍: Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,
期刊最新文献
Cover Picture: ChemBioEng Reviews 6/2024 Table of Contents: ChemBioEng Reviews 6/2024 Masthead: ChemBioEng Reviews 1/2024 Unveiling Biodiesel Production: Exploring Reaction Protocols, Catalysts, and Influential Factors Review of 3D-Printed Titanium-Based Implants: Materials and Post-Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1