Triptycene based microporous hypercrosslinked polymer with amino functionality for selective CO2 capture

IF 2.8 3区 化学 Q2 POLYMER SCIENCE Journal of Applied Polymer Science Pub Date : 2024-10-09 DOI:10.1002/app.56383
Mosim Ansari, Aasif Helal, Mahmoud Mohamed Abdelnaby, Abbas Saeed Hakeem, Mohd Yusuf Khan
{"title":"Triptycene based microporous hypercrosslinked polymer with amino functionality for selective CO2 capture","authors":"Mosim Ansari,&nbsp;Aasif Helal,&nbsp;Mahmoud Mohamed Abdelnaby,&nbsp;Abbas Saeed Hakeem,&nbsp;Mohd Yusuf Khan","doi":"10.1002/app.56383","DOIUrl":null,"url":null,"abstract":"<p>The increasing CO<sub>2</sub> concentration in the atmosphere contributes significantly to global warming, necessitating effective capture techniques. Though amine-based solvents are commonly used, they have drawbacks like high energy consumption and corrosion. Physical adsorption using microporous sorbents with polar groups emerges as a promising alternative, offering high efficiency and selectivity for CO<sub>2</sub> capture. This work presents the design of a new microporous hypercrosslinked polymer with amino groups derived from the 3D molecular building block triptycene (TBMP-NH<sub>2</sub>), for CO<sub>2</sub> capture applications. The triptycene unit in the polymer backbone provides high surface area, thermal stability, and microporosity. TBMP-NH<sub>2</sub> demonstrates excellent thermal stability (<i>T</i><sub>d</sub> &gt; 350°C), considerable microporosity, and a high BET-specific surface area of 866 m<sup>2</sup>/g, making it a promising microporous adsorbent. It exhibits a high CO<sub>2</sub> adsorption capacity of 1.86 mmol/g at 273 K and 1.23 mmol/g at 298 K, with a <i>Q</i><sub>st</sub> value of 33.95 kJ/mol, indicating a physisorption mechanism where the micropore volume (<i>V</i><sub>mic</sub> = 0.359 cm<sup>3</sup>/g) plays a crucial role. TBMP-NH<sub>2</sub> displays good CO<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/CH<sub>4</sub> selectivity, outperforming several reported porous polymers. Owing to its high physiochemical and thermal properties, and efficient and selective CO<sub>2</sub> capture ability, TBMP-NH<sub>2</sub> can be considered a promising material for CO<sub>2</sub> capture and environmental remediation application.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56383","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing CO2 concentration in the atmosphere contributes significantly to global warming, necessitating effective capture techniques. Though amine-based solvents are commonly used, they have drawbacks like high energy consumption and corrosion. Physical adsorption using microporous sorbents with polar groups emerges as a promising alternative, offering high efficiency and selectivity for CO2 capture. This work presents the design of a new microporous hypercrosslinked polymer with amino groups derived from the 3D molecular building block triptycene (TBMP-NH2), for CO2 capture applications. The triptycene unit in the polymer backbone provides high surface area, thermal stability, and microporosity. TBMP-NH2 demonstrates excellent thermal stability (Td > 350°C), considerable microporosity, and a high BET-specific surface area of 866 m2/g, making it a promising microporous adsorbent. It exhibits a high CO2 adsorption capacity of 1.86 mmol/g at 273 K and 1.23 mmol/g at 298 K, with a Qst value of 33.95 kJ/mol, indicating a physisorption mechanism where the micropore volume (Vmic = 0.359 cm3/g) plays a crucial role. TBMP-NH2 displays good CO2/N2 and CO2/CH4 selectivity, outperforming several reported porous polymers. Owing to its high physiochemical and thermal properties, and efficient and selective CO2 capture ability, TBMP-NH2 can be considered a promising material for CO2 capture and environmental remediation application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三叶草烯的微孔高交联聚合物,具有选择性CO2捕获的氨基功能
大气中二氧化碳浓度的增加是全球变暖的重要原因,因此需要有效的捕集技术。虽然胺基溶剂被广泛使用,但它们有高能耗和腐蚀等缺点。利用带极性基团的微孔吸附剂进行物理吸附是一种很有前途的选择,它提供了高效和选择性的CO2捕获。这项工作提出了一种新的微孔高交联聚合物的设计,其氨基来源于3D分子构建块三甲烯(TBMP-NH2),用于二氧化碳捕获应用。聚合物骨架中的三甲烯单元提供了高表面积、热稳定性和微孔隙度。TBMP-NH2表现出优异的热稳定性(Td >;350°C),相当大的微孔隙度,bet比表面积高达866 m2/g,使其成为一种很有前途的微孔吸附剂。在273 K和298 K下,其CO2吸附量分别为1.86 mmol/g和1.23 mmol/g, Qst值为33.95 kJ/mol,表明其物理吸附机制中微孔体积(Vmic = 0.359 cm3/g)起关键作用。TBMP-NH2表现出良好的CO2/N2和CO2/CH4选择性,优于几种已报道的多孔聚合物。TBMP-NH2具有良好的物理化学和热性能,以及高效和选择性的CO2捕集能力,是一种很有前景的CO2捕集和环境修复材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
期刊最新文献
Editorial Board, Aims & Scope, Table of Contents Editorial Board, Aims & Scope, Table of Contents Editorial Board, Aims & Scope, Table of Contents Cover Image, Volume 143, Issue 5 Editorial Board, Aims & Scope, Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1