MTGWNN: A Multi-Template Graph Wavelet Neural Network Identification Model for Autism Spectrum Disorder

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2024-12-08 DOI:10.1002/ima.70010
Shengchang Shan, Yijie Ren, Zhuqing Jiao, Xiaona Li
{"title":"MTGWNN: A Multi-Template Graph Wavelet Neural Network Identification Model for Autism Spectrum Disorder","authors":"Shengchang Shan,&nbsp;Yijie Ren,&nbsp;Zhuqing Jiao,&nbsp;Xiaona Li","doi":"10.1002/ima.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Functional magnetic resonance imaging (fMRI) has been widely applied in studying various brain disorders. However, current studies typically model regions of interest (ROIs) in brains with a single template. This approach generally examines only the connectivity between ROIs to identify autism spectrum disorder (ASD), ignoring the structural features of the brain. This study proposes a multi-template graph wavelet neural network (GWNN) identification model for ASD called MTGWNN. First, the brain is segmented with multiple templates and the BOLD time series are extracted from fMRI data to construct brain networks. Next, a graph attention network (GAT) is applied to automatically learn interactions between nodes, capturing local information in the node features. These features are then further processed by a convolutional neural network (CNN) to learn global connectivity representations and achieve feature dimensionality reduction. Finally, the features and phenotypic data from each subject are integrated by GWNN to identify ASD at the optimal scale. Experimental results indicate that MTGWNN outperforms the comparative models. Testing on the public dataset ABIDE-I achieved an accuracy (ACC) of 87.25% and an area under the curve (AUC) of 92.49%. MTGWNN effectively integrates brain network features from multiple templates, providing a more comprehensive characterization of brain abnormalities in patients with ASD. It incorporates population information from phenotypic data, which helps to compensate for the limited sample size of individual patients and improves the robustness and generalization of ASD identification.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Functional magnetic resonance imaging (fMRI) has been widely applied in studying various brain disorders. However, current studies typically model regions of interest (ROIs) in brains with a single template. This approach generally examines only the connectivity between ROIs to identify autism spectrum disorder (ASD), ignoring the structural features of the brain. This study proposes a multi-template graph wavelet neural network (GWNN) identification model for ASD called MTGWNN. First, the brain is segmented with multiple templates and the BOLD time series are extracted from fMRI data to construct brain networks. Next, a graph attention network (GAT) is applied to automatically learn interactions between nodes, capturing local information in the node features. These features are then further processed by a convolutional neural network (CNN) to learn global connectivity representations and achieve feature dimensionality reduction. Finally, the features and phenotypic data from each subject are integrated by GWNN to identify ASD at the optimal scale. Experimental results indicate that MTGWNN outperforms the comparative models. Testing on the public dataset ABIDE-I achieved an accuracy (ACC) of 87.25% and an area under the curve (AUC) of 92.49%. MTGWNN effectively integrates brain network features from multiple templates, providing a more comprehensive characterization of brain abnormalities in patients with ASD. It incorporates population information from phenotypic data, which helps to compensate for the limited sample size of individual patients and improves the robustness and generalization of ASD identification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多模板图小波神经网络的自闭症谱系障碍识别模型
功能磁共振成像(fMRI)已广泛应用于各种脑部疾病的研究。然而,目前的研究通常使用单一模板来模拟大脑的兴趣区域(roi)。这种方法通常只检查roi之间的连接来识别自闭症谱系障碍(ASD),而忽略了大脑的结构特征。本研究提出了一种多模板图小波神经网络(GWNN)识别ASD的模型,称为MTGWNN。首先,用多个模板对大脑进行分割,并从fMRI数据中提取BOLD时间序列,构建大脑网络;其次,应用图注意网络(GAT)自动学习节点之间的交互,捕获节点特征中的局部信息。然后通过卷积神经网络(CNN)对这些特征进行进一步处理,以学习全局连接表示并实现特征降维。最后,将每个受试者的特征和表型数据通过GWNN进行整合,以在最佳尺度上识别ASD。实验结果表明,MTGWNN优于比较模型。在公共数据集ABIDE-I上进行测试,准确率(ACC)为87.25%,曲线下面积(AUC)为92.49%。MTGWNN有效地整合了来自多个模板的脑网络特征,为ASD患者的脑异常提供了更全面的表征。它结合了来自表型数据的群体信息,这有助于弥补个体患者的有限样本量,提高ASD鉴定的稳健性和泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
A Novel Edge-Enhanced Networks for Optic Disc and Optic Cup Segmentation Relation Explore Convolutional Block Attention Module for Skin Lesion Classification Interactive Pulmonary Lobe Segmentation in CT Images Based on Oriented Derivative of Stick Filter and Surface Fitting Model Microaneurysm Detection With Multiscale Attention and Trident RPN C-TUnet: A CNN-Transformer Architecture-Based Ultrasound Breast Image Classification Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1