Formation of Chemically Complex Intergranular Glass Film: An Effective Strategy to Hinder Grain Coarsening

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-11-08 DOI:10.1002/adem.202401477
Le Fu, Zihua Lei, Wenjun Yu, Yang Liu
{"title":"Formation of Chemically Complex Intergranular Glass Film: An Effective Strategy to Hinder Grain Coarsening","authors":"Le Fu,&nbsp;Zihua Lei,&nbsp;Wenjun Yu,&nbsp;Yang Liu","doi":"10.1002/adem.202401477","DOIUrl":null,"url":null,"abstract":"<p>Thermally driven grain coarsening is a commonly encountered issue in nanocrystalline ceramics, particularly in high-temperature environments. The intergranular glass film (IGF) constitutes a crucial component of most ceramics and plays a pivotal role in the process of grain coarsening. In this study, it is proposed to impede grain coarsening by constructing a chemically complex IGF comprising multiple dopants with distinct ionic radii. Ternary dopants encompassing Al<sup>3+</sup>, Y<sup>3+</sup>, and La<sup>3+</sup> ions are simultaneously incorporated into a ZrO<sub>2</sub>–SiO<sub>2</sub> nanocomposite. To fabricate the nanocomposite, an amorphous precursor powder with uniformly dispersed dopants is prepared using a chemical coprecipitation method, followed by rapid hot pressing to obtain a dense bulk sample. The distribution behavior of ternary dopants at IGFs between adjacent ZrO<sub>2</sub> nanocrystallites (NCs) is carefully examined. It is revealed that the ternary dopants coexist at the IGFs. Moreover, Si<sup>4+</sup> ions exhibit preferential enrichment at the IGFs. Remarkably, the presence of chemically complex IGFs significantly enhances the resistance to grain coarsening in ZrO<sub>2</sub> NCs up to 1000 °C. In these findings, valuable insights are offered for designing and fabricating nanocomposites with exceptional resistance against grain coarsening.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 23","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401477","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermally driven grain coarsening is a commonly encountered issue in nanocrystalline ceramics, particularly in high-temperature environments. The intergranular glass film (IGF) constitutes a crucial component of most ceramics and plays a pivotal role in the process of grain coarsening. In this study, it is proposed to impede grain coarsening by constructing a chemically complex IGF comprising multiple dopants with distinct ionic radii. Ternary dopants encompassing Al3+, Y3+, and La3+ ions are simultaneously incorporated into a ZrO2–SiO2 nanocomposite. To fabricate the nanocomposite, an amorphous precursor powder with uniformly dispersed dopants is prepared using a chemical coprecipitation method, followed by rapid hot pressing to obtain a dense bulk sample. The distribution behavior of ternary dopants at IGFs between adjacent ZrO2 nanocrystallites (NCs) is carefully examined. It is revealed that the ternary dopants coexist at the IGFs. Moreover, Si4+ ions exhibit preferential enrichment at the IGFs. Remarkably, the presence of chemically complex IGFs significantly enhances the resistance to grain coarsening in ZrO2 NCs up to 1000 °C. In these findings, valuable insights are offered for designing and fabricating nanocomposites with exceptional resistance against grain coarsening.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形成化学性质复杂的晶间玻璃膜:阻碍晶粒粗化的有效策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Manufacturing of Continuous Core–Shell Hydrated Salt Fibers for Room Temperature Thermal Energy Storage An Interactive Fluid–Solid Approach for Numerical Modeling of Composite Metal Foam Behavior under Compression Masthead High-Throughput Production of Gelatin-Based Touch-Spun Nanofiber for Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1