Directional Electron Transfer in Enzymatic Nano-Bio Hybrids for Selective Photobiocatalytic Conversion of Nitrate

Dr. Jiyong Bian, Xiaoqiang An, Jing Zhao, Yang Liao, Xianen Lan, Prof. Ruiping Liu, Prof. Chengzhi Hu, Prof. Jie-jie Chen, Huijuan Liu, Jiuhui Qu
{"title":"Directional Electron Transfer in Enzymatic Nano-Bio Hybrids for Selective Photobiocatalytic Conversion of Nitrate","authors":"Dr. Jiyong Bian,&nbsp;Xiaoqiang An,&nbsp;Jing Zhao,&nbsp;Yang Liao,&nbsp;Xianen Lan,&nbsp;Prof. Ruiping Liu,&nbsp;Prof. Chengzhi Hu,&nbsp;Prof. Jie-jie Chen,&nbsp;Huijuan Liu,&nbsp;Jiuhui Qu","doi":"10.1002/ange.202412194","DOIUrl":null,"url":null,"abstract":"<p>Semi-artificial photosynthetic system (SAPS) that combines enzymes or cellular organisms with light-absorbing semiconductors, has emerged as an attractive approach for nitrogen conversion, yet faces the challenge of reaction pathway regulation. Herein, we find that photoelectrons can transfer from the −C≡N groups at the edge of cyano-rich carbon nitride (g-C<sub>3</sub>N<sub>4</sub>-CN) to nitrate reductase (NarGH), while the direct electron transfer to nitrite reductase (<i>cd</i><sub>1</sub>NiR) is inhibited due to the physiological distance limit of active sites (&gt;14 Å). By means of the directional electron transfer between g-C<sub>3</sub>N<sub>4</sub>-CN and extracted biological enzymes, the product of the denitrification reaction was switched from inert N<sub>2</sub> to usable nitrite with an unprecedented selectivity of up to 95.3 %. The converted nitrite could be further utilized by anammox microbiota and dissimilatory nitrate reduction to ammonia (DNRA) microorganisms, doubling the efficiency of total nitrogen removal (96.5±2.3 %) for biological nitrogen removal and ammonia generation (12.6 mg NH<sub>4</sub><sup>+</sup>-N L<sup>−1</sup> h<sup>−1</sup>), respectively. Thus, our work paves an appealing way for the sustainable treatment and utilization of nitrate for ammonia fuel production by strategically regulating the electron transfer pathway across the biotic-abiotic interface.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"136 52","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202412194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-artificial photosynthetic system (SAPS) that combines enzymes or cellular organisms with light-absorbing semiconductors, has emerged as an attractive approach for nitrogen conversion, yet faces the challenge of reaction pathway regulation. Herein, we find that photoelectrons can transfer from the −C≡N groups at the edge of cyano-rich carbon nitride (g-C3N4-CN) to nitrate reductase (NarGH), while the direct electron transfer to nitrite reductase (cd1NiR) is inhibited due to the physiological distance limit of active sites (>14 Å). By means of the directional electron transfer between g-C3N4-CN and extracted biological enzymes, the product of the denitrification reaction was switched from inert N2 to usable nitrite with an unprecedented selectivity of up to 95.3 %. The converted nitrite could be further utilized by anammox microbiota and dissimilatory nitrate reduction to ammonia (DNRA) microorganisms, doubling the efficiency of total nitrogen removal (96.5±2.3 %) for biological nitrogen removal and ammonia generation (12.6 mg NH4+-N L−1 h−1), respectively. Thus, our work paves an appealing way for the sustainable treatment and utilization of nitrate for ammonia fuel production by strategically regulating the electron transfer pathway across the biotic-abiotic interface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于选择性光生物催化转化硝酸盐的酶纳米生物混合体中的定向电子转移
半人工光合作用系统(SAPS)将酶或细胞生物体与光吸收半导体结合在一起,已成为一种极具吸引力的氮转化方法,但也面临着反应途径调控的挑战。在这里,我们发现光电子可以从富氰氮化碳(g-C3N4-CN)边缘的-C≡N基团转移到硝酸还原酶(NarGH),而由于活性位点的生理距离限制(>14 Å),电子直接转移到亚硝酸还原酶(cd1NiR)受到抑制。通过 g-C3N4-CN 与提取的生物酶之间的定向电子转移,脱硝反应的产物从惰性 N2 转化为可用的亚硝酸盐,其选择性高达 95.3%,这是前所未有的。转化后的亚硝酸盐可进一步被厌氧微生物群和异纤性硝酸盐还原成氨(DNRA)微生物利用,使生物脱氮和氨生成(12.6 mg NH4+-N L-1 h-1)的总脱氮效率分别提高了一倍(96.5±2.3 %)。因此,我们的工作通过战略性地调节生物-生物界面的电子传递途径,为可持续地处理和利用硝酸盐生产氨燃料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Frontispiz: Ein ortsspezifischer Click-Chemie-Ansatz zur Diubiquitylierung von H1-Varianten zeigt eine positionsabhängige Stimulation des DNA-Reparaturproteins RNF168 Graphisches Inhaltsverzeichnis: Angew. Chem. 52/2024 Frontispiz: Experimental and Computational Evidence of a Stable RNA G-Triplex Structure at Physiological Temperature in the SARS-CoV-2 Genome Frontispiz: Cell-Permeable Nicotinamide Adenine Dinucleotides for Exploration of Cellular Protein ADP-Ribosylation Graphisches Inhaltsverzeichnis: Angew. Chem. 51/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1