Investigating Melt Pool Dimensions in Laser Powder Bed Fusion of Nitinol: An Analytical Approach

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-11-13 DOI:10.1002/adem.202401636
Sampreet Rangaswamy, Declan Bourke, Medad C. C. Monu, Paul Healy, Hengfeng Gu, Inam Ul Ahad, Dermot Brabazon
{"title":"Investigating Melt Pool Dimensions in Laser Powder Bed Fusion of Nitinol: An Analytical Approach","authors":"Sampreet Rangaswamy,&nbsp;Declan Bourke,&nbsp;Medad C. C. Monu,&nbsp;Paul Healy,&nbsp;Hengfeng Gu,&nbsp;Inam Ul Ahad,&nbsp;Dermot Brabazon","doi":"10.1002/adem.202401636","DOIUrl":null,"url":null,"abstract":"<p>Nitinol (NiTi) has gained popularity across various industries due to its shape memory and superelastic properties. Recently, additive manufacturing (AM) has been increasingly utilized to produce NiTi components. This study focuses on single-track nitinol samples fabricated via powder bed fusion using laser beam (PBF-LB). Investigating the effects of laser power and scanning speed on melt pool dimensions reveals that melt pool width increases linearly with laser power and decreases logarithmically with scanning speed. However, melt pool depth exhibits outliers that deviate from these trends. Three analytical models are evaluated to predict melt pool dimensions, generally aligning with experimental trends. Notably, the Eagar–Tsai model delivers the most accurate predictions for melt pool width, with a mean absolute error of less than 10%, while the Gladush–Smurov model is more reliable for melt pool depth predictions, showing a mean absolute error under 20%. In contrast, the Rosenthal equation yields less reliable results for both dimensions. This suggests that a combined approach utilizing the strengths of both the Eagar–Tsai and Gladush–Smurov models may provide the most accurate predictions for the melt pool profile of NiTi in PBF-LB.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202401636","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401636","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitinol (NiTi) has gained popularity across various industries due to its shape memory and superelastic properties. Recently, additive manufacturing (AM) has been increasingly utilized to produce NiTi components. This study focuses on single-track nitinol samples fabricated via powder bed fusion using laser beam (PBF-LB). Investigating the effects of laser power and scanning speed on melt pool dimensions reveals that melt pool width increases linearly with laser power and decreases logarithmically with scanning speed. However, melt pool depth exhibits outliers that deviate from these trends. Three analytical models are evaluated to predict melt pool dimensions, generally aligning with experimental trends. Notably, the Eagar–Tsai model delivers the most accurate predictions for melt pool width, with a mean absolute error of less than 10%, while the Gladush–Smurov model is more reliable for melt pool depth predictions, showing a mean absolute error under 20%. In contrast, the Rosenthal equation yields less reliable results for both dimensions. This suggests that a combined approach utilizing the strengths of both the Eagar–Tsai and Gladush–Smurov models may provide the most accurate predictions for the melt pool profile of NiTi in PBF-LB.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究激光粉末床熔融镍钛诺的熔池尺寸:分析方法
镍钛诺(NiTi)由于其形状记忆和超弹性特性而在各个行业中受到欢迎。最近,增材制造(AM)越来越多地用于生产NiTi组件。研究了激光粉末床熔合法制备镍钛诺单轨样品。研究了激光功率和扫描速度对熔池尺寸的影响,发现熔池宽度随激光功率线性增加,随扫描速度对数减小。然而,熔池深度显示出偏离这些趋势的异常值。评估了三种分析模型来预测熔池尺寸,总体上与实验趋势一致。值得注意的是,Eagar-Tsai模型对熔池宽度的预测最准确,平均绝对误差小于10%,而Gladush-Smurov模型对熔池深度的预测更可靠,平均绝对误差小于20%。相比之下,罗森塔尔方程在两个维度上产生的结果不太可靠。这表明,结合Eagar-Tsai和Gladush-Smurov模型的优势,可以为PBF-LB中NiTi的熔池剖面提供最准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Manufacturing of Continuous Core–Shell Hydrated Salt Fibers for Room Temperature Thermal Energy Storage An Interactive Fluid–Solid Approach for Numerical Modeling of Composite Metal Foam Behavior under Compression Masthead High-Throughput Production of Gelatin-Based Touch-Spun Nanofiber for Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1