{"title":"Features of the Velocity Distribution and Secondary Flow in a Compound Channel With Vegetation","authors":"Zhi-Peng Zhu, Fei Dong, Wei-Jie Wang, Han-Qing Zhao, Jin-Jin Li, Qing-Feng Meng, Da-Cheng Li","doi":"10.1002/hyp.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Aquatic vegetation is an important component of natural river ecosystem, usually growing in riverine, marsh, and coastal areas, interacting with water flow to form complex flow structure, which has an important impact on bank slope stability and flood discharge capacity of river channels. Four sets of indoor flume vegetation-flow experiments were conducted using a typical beach trough structure in the lower section of the Yangtze River. The compound channel was divided into the main channel, side slope and side beach zones, and simulated vegetation such as reeds, sedges and dwarf grass were used. The emphasis was on the hydrodynamic properties under semi-covered emergent rigid vegetation and semi-covered non-submerged rigid vegetation. In this study, the Shiono and Knight equation (SKM model) was used to elucidate the distribution characteristics of ‘the depth-averaged velocity <i>U</i><sub><i>d</i></sub>’ and ‘equivalent diameter <i>D</i>’ of vegetation in water gradient, and the Taylor method was used to demonstrate that the proposed ‘equivalent diameter <i>D</i>’ of vegetation has a certain level of accuracy within a reasonable threshold range. In addition, a new secondary flow model was proposed using a genetic algorithm that considers many hydraulic and vegetation parameters. Further, a new secondary flow model was proposed using a genetic algorithm that considers many hydraulic and vegetation parameters. Finally, ‘the depth-averaged velocity <i>U</i><sub><i>d</i></sub>’ of the compound channel was accurately predicted by combining the experimental data with the new SKM model. In this study, we investigated the water-blocking ability of gradient vegetation in river water. A method in which the secondary flow law and formula are difficult to determine was solved, which could provide technical support for the design of complex vegetated rivers and the evaluation of the flood discharge capacity of rivers.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70001","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Aquatic vegetation is an important component of natural river ecosystem, usually growing in riverine, marsh, and coastal areas, interacting with water flow to form complex flow structure, which has an important impact on bank slope stability and flood discharge capacity of river channels. Four sets of indoor flume vegetation-flow experiments were conducted using a typical beach trough structure in the lower section of the Yangtze River. The compound channel was divided into the main channel, side slope and side beach zones, and simulated vegetation such as reeds, sedges and dwarf grass were used. The emphasis was on the hydrodynamic properties under semi-covered emergent rigid vegetation and semi-covered non-submerged rigid vegetation. In this study, the Shiono and Knight equation (SKM model) was used to elucidate the distribution characteristics of ‘the depth-averaged velocity Ud’ and ‘equivalent diameter D’ of vegetation in water gradient, and the Taylor method was used to demonstrate that the proposed ‘equivalent diameter D’ of vegetation has a certain level of accuracy within a reasonable threshold range. In addition, a new secondary flow model was proposed using a genetic algorithm that considers many hydraulic and vegetation parameters. Further, a new secondary flow model was proposed using a genetic algorithm that considers many hydraulic and vegetation parameters. Finally, ‘the depth-averaged velocity Ud’ of the compound channel was accurately predicted by combining the experimental data with the new SKM model. In this study, we investigated the water-blocking ability of gradient vegetation in river water. A method in which the secondary flow law and formula are difficult to determine was solved, which could provide technical support for the design of complex vegetated rivers and the evaluation of the flood discharge capacity of rivers.
水生植被是天然河流生态系统的重要组成部分,通常生长在河流、沼泽和沿海地区,与水流相互作用形成复杂的水流结构,对岸坡稳定性和河道泄洪能力具有重要影响。以长江下游典型滩槽结构为研究对象,进行了4组室内水槽植被流动试验。将复合河道划分为主河道区、边坡区和侧滩区,并模拟芦苇、莎草、矮草等植被。重点研究了半覆盖急生刚性植被和半覆盖非淹没刚性植被条件下的水动力特性。本研究利用Shiono and Knight方程(SKM模型)阐明了植被“深度平均流速Ud”和“等效直径D”在水体梯度中的分布特征,并利用Taylor方法验证了所提出的植被“等效直径D”在合理的阈值范围内具有一定的精度。在此基础上,利用遗传算法建立了一种考虑多种水力和植被参数的二次流模型。在此基础上,利用遗传算法建立了一种考虑多种水力和植被参数的二次流模型。最后,将实验数据与新的SKM模型相结合,准确地预测了复合通道的“深度平均速度Ud”。本文研究了梯度植被在河流水体中的阻水能力。解决了二次流规律和公式难以确定的问题,为复杂植被河流的设计和河流泄洪能力评价提供了技术支持。
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.