{"title":"Development of optimal real-time metro operation strategy minimizing total passenger travel time and train energy consumption","authors":"Yoonseok Oh, Ho-Chan Kwak, Seungmo Kang","doi":"10.1049/itr2.12582","DOIUrl":null,"url":null,"abstract":"<p>The optimization of the total passenger travel time and total train energy consumption are critical factors in metro operation optimization. However, deriving an optimal train operation plan that incorporates both passenger travel time and total train energy consumption is a complex task because it should consider numerous variables representing the operational status of the urban railway, such as the number of boarding and alighting passengers, number of on-board passengers in each train, and entire train operation status along the line. Moreover, owing to the fluctuating nature of passenger demand, which can change rapidly over time, its optimization becomes challenging. To address this challenge, this study develops a recurrent neural network-based real-time metro operation optimization model trained using data representing the moments when the trains departed from the stations. These data are derived and reconstructed from various simulated operation plans while searching for optimal daily metro timetable. Consequently, the proposed model derives the real-time optimal operation strategies for trains departing from the next station within an average of 0.18 s. The result of metro operation simulations using proposed optimal operation strategies reveals a 7–14% improvement in efficiency compared to the current train operation strategies.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2440-2458"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12582","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12582","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The optimization of the total passenger travel time and total train energy consumption are critical factors in metro operation optimization. However, deriving an optimal train operation plan that incorporates both passenger travel time and total train energy consumption is a complex task because it should consider numerous variables representing the operational status of the urban railway, such as the number of boarding and alighting passengers, number of on-board passengers in each train, and entire train operation status along the line. Moreover, owing to the fluctuating nature of passenger demand, which can change rapidly over time, its optimization becomes challenging. To address this challenge, this study develops a recurrent neural network-based real-time metro operation optimization model trained using data representing the moments when the trains departed from the stations. These data are derived and reconstructed from various simulated operation plans while searching for optimal daily metro timetable. Consequently, the proposed model derives the real-time optimal operation strategies for trains departing from the next station within an average of 0.18 s. The result of metro operation simulations using proposed optimal operation strategies reveals a 7–14% improvement in efficiency compared to the current train operation strategies.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf