Liu Xiong, Chunxia Chen, Yongping Lin, Zhiyu Song, Jialin Su
{"title":"A Three-Step Automated Segmentation Method for Early Cervical Cancer MRI Images Based on Deep Learning","authors":"Liu Xiong, Chunxia Chen, Yongping Lin, Zhiyu Song, Jialin Su","doi":"10.1002/ima.23207","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Tumor detection and segmentation are essential for cervical cancer (CC) treatment and diagnosis. This study presents a model that segmented the tumor, uterus, and vagina based on deep learning automatically on magnetic resonance imaging (MRI) images of patients with CC. The tumor detection dataset consists of 68 CC patients' diffusion-weighted magnetic resonance imaging (DWI) images. The segmented dataset consists of 73 CC patients' T2-weighted imaging (T2WI) images. First, the three clear images of the patient's DWI images are detected using a single-shot multibox detector (SSD). Second, the serial number of the clearest image is obtained by scores, while the corresponding T2WI image with the same serial number is selected. Third, the selected images are segmented by employing the semantic segmentation (U-Net) model with the squeeze-and-excitation (SE) block and attention gate (SE-ATT-Unet). Three segmentation models are implemented to automatically segment the tumor, uterus, and vagina separately by adding different attention mechanisms at different locations. The target detection accuracy of the model is 92.32%, and the selection accuracy is 90.9%. The dice similarity coefficient (DSC) on the tumor is 92.20%, pixel accuracy (PA) is 93.08%, and the mean Hausdorff distance (HD) is 3.41 mm. The DSC on the uterus is 93.63%, PA is 91.75%, and the mean HD is 9.79 mm. The DSC on the vagina is 75.70%, PA is 85.46%, and the mean HD is 10.52 mm. The results show that the proposed method accurately selects images for segmentation, and the SE-ATT-Unet is effective in segmenting different regions on MRI images.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23207","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor detection and segmentation are essential for cervical cancer (CC) treatment and diagnosis. This study presents a model that segmented the tumor, uterus, and vagina based on deep learning automatically on magnetic resonance imaging (MRI) images of patients with CC. The tumor detection dataset consists of 68 CC patients' diffusion-weighted magnetic resonance imaging (DWI) images. The segmented dataset consists of 73 CC patients' T2-weighted imaging (T2WI) images. First, the three clear images of the patient's DWI images are detected using a single-shot multibox detector (SSD). Second, the serial number of the clearest image is obtained by scores, while the corresponding T2WI image with the same serial number is selected. Third, the selected images are segmented by employing the semantic segmentation (U-Net) model with the squeeze-and-excitation (SE) block and attention gate (SE-ATT-Unet). Three segmentation models are implemented to automatically segment the tumor, uterus, and vagina separately by adding different attention mechanisms at different locations. The target detection accuracy of the model is 92.32%, and the selection accuracy is 90.9%. The dice similarity coefficient (DSC) on the tumor is 92.20%, pixel accuracy (PA) is 93.08%, and the mean Hausdorff distance (HD) is 3.41 mm. The DSC on the uterus is 93.63%, PA is 91.75%, and the mean HD is 9.79 mm. The DSC on the vagina is 75.70%, PA is 85.46%, and the mean HD is 10.52 mm. The results show that the proposed method accurately selects images for segmentation, and the SE-ATT-Unet is effective in segmenting different regions on MRI images.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.