DBE-Net: A Dual-Branch Boundary Enhancement Network for Pathological Image Segmentation

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2024-12-16 DOI:10.1002/ima.70017
Zefeng Liu, Zhenyu Liu
{"title":"DBE-Net: A Dual-Branch Boundary Enhancement Network for Pathological Image Segmentation","authors":"Zefeng Liu,&nbsp;Zhenyu Liu","doi":"10.1002/ima.70017","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Pathological image segmentation provides support for the accurate assessment of lesion area by precisely segmenting various tissues and cellular structures in pathological images. Due to the unclear boundaries between targets and backgrounds, as well as the information loss during upsampling and downsampling operations, it remains a challenging task to identify boundary details, especially in differentiating between adjacent tissues, minor lesions, or clustered cell nuclei. In this paper, a Dual-branch Boundary Enhancement Network (DBE-Net) is proposed to improve the sensitivity of the model to the boundary. Firstly, the proposed method includes a main task and an auxiliary task. The main task focuses on segmenting the target object and the auxiliary task is dedicated to extracting boundary information. Secondly, a feature processing architecture is established which includes three modules: Feature Preservation (FP), Feature Fusion (FF), and Hybrid Attention Fusion (HAF) module. The FP module and the FF module are used to provide original information for the encoder and fuse information from every layer of the decoder. The HAF is introduced to replace the skip connections between the encoder and decoder. Finally, a boundary-dependent loss function is designed to simultaneously optimize both tasks for the dual-branch network. The proposed loss function enhances the dependence of the main task on the boundary information supplied by the auxiliary task. The proposed method has been validated on three datasets, including Glas, CoCaHis, and CoNSep dataset.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Pathological image segmentation provides support for the accurate assessment of lesion area by precisely segmenting various tissues and cellular structures in pathological images. Due to the unclear boundaries between targets and backgrounds, as well as the information loss during upsampling and downsampling operations, it remains a challenging task to identify boundary details, especially in differentiating between adjacent tissues, minor lesions, or clustered cell nuclei. In this paper, a Dual-branch Boundary Enhancement Network (DBE-Net) is proposed to improve the sensitivity of the model to the boundary. Firstly, the proposed method includes a main task and an auxiliary task. The main task focuses on segmenting the target object and the auxiliary task is dedicated to extracting boundary information. Secondly, a feature processing architecture is established which includes three modules: Feature Preservation (FP), Feature Fusion (FF), and Hybrid Attention Fusion (HAF) module. The FP module and the FF module are used to provide original information for the encoder and fuse information from every layer of the decoder. The HAF is introduced to replace the skip connections between the encoder and decoder. Finally, a boundary-dependent loss function is designed to simultaneously optimize both tasks for the dual-branch network. The proposed loss function enhances the dependence of the main task on the boundary information supplied by the auxiliary task. The proposed method has been validated on three datasets, including Glas, CoCaHis, and CoNSep dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DBE-Net:用于病理图像分割的双分支边界增强网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
A Novel Edge-Enhanced Networks for Optic Disc and Optic Cup Segmentation Relation Explore Convolutional Block Attention Module for Skin Lesion Classification Interactive Pulmonary Lobe Segmentation in CT Images Based on Oriented Derivative of Stick Filter and Surface Fitting Model Microaneurysm Detection With Multiscale Attention and Trident RPN C-TUnet: A CNN-Transformer Architecture-Based Ultrasound Breast Image Classification Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1