Particle Size and Crystal habit Modification of Ammonium Perchlorate Using Cooling Sonocrystallization Process

IF 1.5 4区 材料科学 Q3 Chemistry Crystal Research and Technology Pub Date : 2024-11-17 DOI:10.1002/crat.202400163
Shumin Lin, Salal Hasan Khudaida, Chie-Shaan Su
{"title":"Particle Size and Crystal habit Modification of Ammonium Perchlorate Using Cooling Sonocrystallization Process","authors":"Shumin Lin,&nbsp;Salal Hasan Khudaida,&nbsp;Chie-Shaan Su","doi":"10.1002/crat.202400163","DOIUrl":null,"url":null,"abstract":"<p>Ammonium perchlorate (AP) is a widely used solid oxidizer in solid propellant formulations, with its particle size and crystal habit significantly affecting performance. Since controlling these properties remains challenging, this study employs an intensified crystallization strategy, specifically a cooling sonocrystallization process, to recrystallize AP to control and modify its particle size and crystal habit. The effects of solution concentration, sonication intensity, sonication pulse on/off recipe, and cooling rate on the recrystallization of AP are first investigated using a Taguchi L9 orthogonal array design. By understanding the main effect of these operating parameters, further sonocrystallization experiments are designed for process improvement. Compared with the unprocessed AP, the crystal habit and mean particle size of AP are considerably modified after cooling sonocrystallization, achieving a mean size of approximately 50 µm with a regular habit. Consistency in crystal structure and spectrometric properties between sonocrystallized and unprocessed AP was confirmed. Furthermore, the thermal properties and decomposition behavior of the sonocrystallized AP are analyzed, revealing improved exothermic characteristics. These results prove that cooling sonocrystallization is an efficient tool for producing AP particles and also holds the potential for preparing fine particles of other energetic materials.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400163","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonium perchlorate (AP) is a widely used solid oxidizer in solid propellant formulations, with its particle size and crystal habit significantly affecting performance. Since controlling these properties remains challenging, this study employs an intensified crystallization strategy, specifically a cooling sonocrystallization process, to recrystallize AP to control and modify its particle size and crystal habit. The effects of solution concentration, sonication intensity, sonication pulse on/off recipe, and cooling rate on the recrystallization of AP are first investigated using a Taguchi L9 orthogonal array design. By understanding the main effect of these operating parameters, further sonocrystallization experiments are designed for process improvement. Compared with the unprocessed AP, the crystal habit and mean particle size of AP are considerably modified after cooling sonocrystallization, achieving a mean size of approximately 50 µm with a regular habit. Consistency in crystal structure and spectrometric properties between sonocrystallized and unprocessed AP was confirmed. Furthermore, the thermal properties and decomposition behavior of the sonocrystallized AP are analyzed, revealing improved exothermic characteristics. These results prove that cooling sonocrystallization is an efficient tool for producing AP particles and also holds the potential for preparing fine particles of other energetic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用冷却声波结晶工艺改变高氯酸铵的粒度和晶体习性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
期刊最新文献
Issue Information: Crystal Research and Technology 12'2024 Particle Size and Crystal habit Modification of Ammonium Perchlorate Using Cooling Sonocrystallization Process Crystal Growth, Optical, Mechanical and Dielectric Analysis of Semiorganic Glycine Manganese Sulphate Single Crystal for Opto-Electronic Device Application Synthesis, Structure, and Non-Linear Optical Properties of New Metal Semi-Organic Complex: 1,4-diazabicyclo[2.2.2]octane-1,4-diium tris(nitrato)-silver Issue Information: Crystal Research and Technology 11'2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1