{"title":"An Electro-Elastic Coupling Model for Piezoelectric Composites Based on the Voronoi Cell Finite Element Method","authors":"Huan Li, Nan Yang, Ran Guo","doi":"10.1002/nme.7631","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Voronoi cell finite element method (VCFEM) has successfully characterized the linear elastic behavior of the composites. This study is dedicated to develop an electro-elastic coupling VCFEM model mimicking the fully-coupled electro-elastic behavior of piezoelectric composites. For fiber-reinforced piezoelectric composites considering interfacial cracks, the interface traction reciprocity, the interface charge density reciprocity on bonded interfaces and the interface traction-free, the interface charge density-free on debonded interfaces are comprised in the new assumed stress and electric displacement hybrid variational functional. The new variational functional is derived on the base of the element multifield energy functionals. Independent stress/electric displacement fields are respectively assumed within the two-phase material domain. Several numerical examples considering perfectly-bonded interface and partially cracked interface were used to demonstrate the accuracy of the proposed method by comparing the piezoelectric Voronoi element model results with those obtained by ABAQUS. Then this model is used to study the effect of several microscopic details, such as the property ratio of fiber to matrix, volume fraction, interfacial crack length and polarization direction on macroscopic equivalent physical and mechanical properties, as well as local stress/electric displacement fields. It is clear that the proposed model is suitable for analyzing piezoelectric composites containing many microstructures with bonded interface or debonded interface.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7631","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Voronoi cell finite element method (VCFEM) has successfully characterized the linear elastic behavior of the composites. This study is dedicated to develop an electro-elastic coupling VCFEM model mimicking the fully-coupled electro-elastic behavior of piezoelectric composites. For fiber-reinforced piezoelectric composites considering interfacial cracks, the interface traction reciprocity, the interface charge density reciprocity on bonded interfaces and the interface traction-free, the interface charge density-free on debonded interfaces are comprised in the new assumed stress and electric displacement hybrid variational functional. The new variational functional is derived on the base of the element multifield energy functionals. Independent stress/electric displacement fields are respectively assumed within the two-phase material domain. Several numerical examples considering perfectly-bonded interface and partially cracked interface were used to demonstrate the accuracy of the proposed method by comparing the piezoelectric Voronoi element model results with those obtained by ABAQUS. Then this model is used to study the effect of several microscopic details, such as the property ratio of fiber to matrix, volume fraction, interfacial crack length and polarization direction on macroscopic equivalent physical and mechanical properties, as well as local stress/electric displacement fields. It is clear that the proposed model is suitable for analyzing piezoelectric composites containing many microstructures with bonded interface or debonded interface.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.