Subbulakshmi Ganesan, Vijay J. Upadhye, Nutan Sharma, Arpit Arora, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Samer Hasan Hussein-Al-Ali, Suha Mujahed Abudoleh, Indumathi Thangavelu
{"title":"Construction of Sorafenib Tosylate and Etoposide-loaded Liposomes: A Path to Precision Liver Cancer Therapy and its Apoptosis Induction","authors":"Subbulakshmi Ganesan, Vijay J. Upadhye, Nutan Sharma, Arpit Arora, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Samer Hasan Hussein-Al-Ali, Suha Mujahed Abudoleh, Indumathi Thangavelu","doi":"10.1002/slct.202404117","DOIUrl":null,"url":null,"abstract":"<p>Nanotechnology is an effective tool in fighting against cancer, playing a crucial role in investigating and fabricating novel anticancer drugs. Recognizing the worldwide prevalence of cancer, we combined sorafenib tosylate (ST) and etoposide (ETP) within liposomes. We assessed their ability to kill human umbilical vein endothelial cells (HUVECs) and HepG2 liver cancer cells. The liposomes effectively contained ST and ETP, exhibiting a particle size distribution below 180 nm, a polydisperse index (PDI) below 0.2, a spherical shape, a strong negatively charged zeta potential, and encapsulation efficiencies of 59% for ST, 88% for ETP, and 57% for ST combined with 87% for ETP. The FTIR analysis indicates that the drugs were incorporated within liposomes. Encapsulation of the drugs in liposomes resulted in a more significant cytotoxic impact on HepG2 cells and a reduced cytotoxic impact on HUVECs. The morphological assessment of the HepG2 liver cancer cells was investigated using AO-EB and Hoechst 33258 staining methods. Apoptosis mechanisms of HepG2 cells were examined by Annexin V and PI dual staining. Furthermore, the coadministration of ST and ETP, which were enclosed in liposomes, resulted in a synergistic impact on the drugs, leading to cell death by apoptosis.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"9 48","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202404117","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanotechnology is an effective tool in fighting against cancer, playing a crucial role in investigating and fabricating novel anticancer drugs. Recognizing the worldwide prevalence of cancer, we combined sorafenib tosylate (ST) and etoposide (ETP) within liposomes. We assessed their ability to kill human umbilical vein endothelial cells (HUVECs) and HepG2 liver cancer cells. The liposomes effectively contained ST and ETP, exhibiting a particle size distribution below 180 nm, a polydisperse index (PDI) below 0.2, a spherical shape, a strong negatively charged zeta potential, and encapsulation efficiencies of 59% for ST, 88% for ETP, and 57% for ST combined with 87% for ETP. The FTIR analysis indicates that the drugs were incorporated within liposomes. Encapsulation of the drugs in liposomes resulted in a more significant cytotoxic impact on HepG2 cells and a reduced cytotoxic impact on HUVECs. The morphological assessment of the HepG2 liver cancer cells was investigated using AO-EB and Hoechst 33258 staining methods. Apoptosis mechanisms of HepG2 cells were examined by Annexin V and PI dual staining. Furthermore, the coadministration of ST and ETP, which were enclosed in liposomes, resulted in a synergistic impact on the drugs, leading to cell death by apoptosis.
期刊介绍:
ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.