{"title":"Robust and Highly Stretchable Ionic Conductive Thermoplastic Elastomers Prepared via Easily Scalable Melt Transesterification and Melt Blending for Flexible Triboelectric Nanogenerators","authors":"Dongguang Yan, Chengyu Gu, Xinrui Pi, Yingqiang Fan, Bingbing Feng, Tianhao Li, Tianran Deng, Guanggui Cheng","doi":"10.1002/ente.202400834","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the rapid advancement of self-powered wearable electronic devices has propelled the research focus toward flexible electrodes for single electrode triboelectric nanogenerators (STENG). However, there is currently a lack of reported methods for large-scale preparation and high-efficiency molding of these flexible electrodes. In this study, PBAT<i>-co</i>-PEG/NaSCN blends-based ionic conductive thermoplastic elastomer (ICTE) are successfully prepared by initially conducting melt transesterification, followed by melt blending. The STENG, featuring an ICTE electrode, exhibited a remarkable open-circuit voltage of 50 V, short-circuit current of 460 nA and charge transfer of 16 nC. With the aid of Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), the conduction mechanism of ICTE is elucidated. Due to good fluidity and processing performance, bars of ICTE suitable for mechanical properties test could be conveniently prepared via injection molding, which demonstrates the tensile strength and elongation, 13 MPa and 2500%, respectively. A 4 × 4 cm<sup>2</sup> STENG fabricated with ICTE electrode could not only have good energy-harvesting performance but also could be used in a sensor to sense the motion detection. The ICTE, with its simple and environmentally friendly preparation process and high-efficiency molding, exhibits a promising prospect in the large-scale preparation and application of flexible STENG.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 12","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400834","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the rapid advancement of self-powered wearable electronic devices has propelled the research focus toward flexible electrodes for single electrode triboelectric nanogenerators (STENG). However, there is currently a lack of reported methods for large-scale preparation and high-efficiency molding of these flexible electrodes. In this study, PBAT-co-PEG/NaSCN blends-based ionic conductive thermoplastic elastomer (ICTE) are successfully prepared by initially conducting melt transesterification, followed by melt blending. The STENG, featuring an ICTE electrode, exhibited a remarkable open-circuit voltage of 50 V, short-circuit current of 460 nA and charge transfer of 16 nC. With the aid of Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), the conduction mechanism of ICTE is elucidated. Due to good fluidity and processing performance, bars of ICTE suitable for mechanical properties test could be conveniently prepared via injection molding, which demonstrates the tensile strength and elongation, 13 MPa and 2500%, respectively. A 4 × 4 cm2 STENG fabricated with ICTE electrode could not only have good energy-harvesting performance but also could be used in a sensor to sense the motion detection. The ICTE, with its simple and environmentally friendly preparation process and high-efficiency molding, exhibits a promising prospect in the large-scale preparation and application of flexible STENG.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.