Low Temperature Sabatier CO2 Methanation

IF 3.8 3区 化学 Q2 CHEMISTRY, PHYSICAL ChemCatChem Pub Date : 2024-09-20 DOI:10.1002/cctc.202401213
Clément Molinet-Chinaglia, Seema Shafiq, Philippe Serp
{"title":"Low Temperature Sabatier CO2 Methanation","authors":"Clément Molinet-Chinaglia,&nbsp;Seema Shafiq,&nbsp;Philippe Serp","doi":"10.1002/cctc.202401213","DOIUrl":null,"url":null,"abstract":"<p>The CO<sub>2</sub> methanation reaction, or Sabatier reaction, is experiencing renewed interest in the context of large-scale recycling of point CO<sub>2</sub> emissions, leading to the power-to-gas technology. The reaction represents a flexible route to transform CO<sub>2</sub> into methane by hydrogenation with (green) dihydrogen. This exothermic transformation takes place at a reasonable rate at temperatures above 200 °C and is directed to the targeted product at low temperatures. The CO<sub>2</sub> methanation nevertheless remains kinetically limited due to the chemical stability of CO<sub>2</sub> and the high bond dissociation energy for C═O in CO<sub>2</sub>. Therefore, the current urgent demand is for the development of catalysts and associated processes with superior activity for CO<sub>2</sub> activation at low temperatures. This critical review aims to overview the state of the art of this low-temperature technology using thermal, plasma and photo-assisted catalysis. We summarize research advances around low-temperature CO<sub>2</sub> methanation, focusing on catalyst formulations (metal, supports and promoters), reaction mechanisms and suitable activation processes. We discuss each of these critical aspects of the technology and identify the main challenges and opportunities for low temperature (≤200 °C) CO<sub>2</sub> methanation.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 24","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202401213","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202401213","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The CO2 methanation reaction, or Sabatier reaction, is experiencing renewed interest in the context of large-scale recycling of point CO2 emissions, leading to the power-to-gas technology. The reaction represents a flexible route to transform CO2 into methane by hydrogenation with (green) dihydrogen. This exothermic transformation takes place at a reasonable rate at temperatures above 200 °C and is directed to the targeted product at low temperatures. The CO2 methanation nevertheless remains kinetically limited due to the chemical stability of CO2 and the high bond dissociation energy for C═O in CO2. Therefore, the current urgent demand is for the development of catalysts and associated processes with superior activity for CO2 activation at low temperatures. This critical review aims to overview the state of the art of this low-temperature technology using thermal, plasma and photo-assisted catalysis. We summarize research advances around low-temperature CO2 methanation, focusing on catalyst formulations (metal, supports and promoters), reaction mechanisms and suitable activation processes. We discuss each of these critical aspects of the technology and identify the main challenges and opportunities for low temperature (≤200 °C) CO2 methanation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温Sabatier CO2甲烷化
二氧化碳甲烷化反应(或称萨巴蒂尔反应)在大规模回收点式二氧化碳排放的背景下再次引起人们的关注,并由此产生了电力制气技术。该反应是通过氢化(绿色)二氢将二氧化碳转化为甲烷的灵活途径。这种放热转化在 200 °C 以上的温度下以合理的速度进行,并在低温下直接转化为目标产物。然而,由于 CO2 的化学稳定性和 CO2 中 C═O 的高键解离能,CO2 甲烷化仍然受到动力学限制。因此,当前的当务之急是开发具有卓越活性的催化剂和相关工艺,以便在低温条件下活化 CO2。本评论旨在概述利用热催化、等离子体催化和光助催化的低温技术的最新进展。我们总结了围绕低温二氧化碳甲烷化的研究进展,重点关注催化剂配方(金属、支持物和促进剂)、反应机理和合适的活化过程。我们讨论了该技术的每个关键方面,并确定了低温(≤200 °C)二氧化碳甲烷化的主要挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
期刊最新文献
Front Cover: Recent Advances in Photocatalytic Nitrogen Fixation Based on Two-Dimensional Materials (ChemCatChem 24/2024) Front Cover: Au Clusters Catalyze The Disulfide Metathesis Reaction By A Reductive Addition-Oxidative Elimination Mechanism (ChemCatChem 23/2024) Front Cover: Promoting Effect of Pd Nanoparticles on SrTi0.8Mn0.2O3 in the Reverse Water-Gas Shift Reaction via the Mars–Van Krevelen Mechanism (ChemCatChem 22/2024) Cover Feature: Selective Catalytic Reduction of Nitrogen Oxides with Hydrogen (H2-SCR-DeNOx) over Platinum-Based Catalysts (ChemCatChem 22/2024) Front Cover: Nitrite Electroreduction Enhanced by Hybrid Compounds of Keggin Polyoxometalates and 1-Butyl-3-Vinylimidazolium (ChemCatChem 21/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1