Larry Guan, Liming Li, Ellen C. Creecy, Xun Jiang, Xinyue Wang, Germán Martínez, Anthony D. Toigo, Mark I. Richardson, Agustín Sánchez-Lavega, Yeon Joo Lee
{"title":"Distinct Energy Budgets of Mars and Earth","authors":"Larry Guan, Liming Li, Ellen C. Creecy, Xun Jiang, Xinyue Wang, Germán Martínez, Anthony D. Toigo, Mark I. Richardson, Agustín Sánchez-Lavega, Yeon Joo Lee","doi":"10.1029/2024AV001389","DOIUrl":null,"url":null,"abstract":"<p>The radiant energy budget (REB) is a fundamental physical parameter for planetary bodies, though studies constraining the REB for bodies beyond Earth are relatively limited. We generate the first meridional profiles of Mars' REB at seasonal and annual timescales through measurements based on long term multi-instrument observations from spacecraft orbiting Mars. Then, we compare our findings to Earth's REB using contemporary satellite data sets. Each planet exhibits remarkably distinct seasonal REB distributions due to differences in their orbital, atmospheric, and surface properties. Annually, Earth's REB exhibits a tropical energy surplus and a deficit at the poles. In contrast, Mars' annual REB displays an inverted meridional distribution with significant hemispheric asymmetry. Additionally, global dust storms significantly modify the Martian REB. Our observations are employable in future studies to improve models on Mars' general circulation, meteorology, and polar ice cap evolution.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 6","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001389","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024AV001389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The radiant energy budget (REB) is a fundamental physical parameter for planetary bodies, though studies constraining the REB for bodies beyond Earth are relatively limited. We generate the first meridional profiles of Mars' REB at seasonal and annual timescales through measurements based on long term multi-instrument observations from spacecraft orbiting Mars. Then, we compare our findings to Earth's REB using contemporary satellite data sets. Each planet exhibits remarkably distinct seasonal REB distributions due to differences in their orbital, atmospheric, and surface properties. Annually, Earth's REB exhibits a tropical energy surplus and a deficit at the poles. In contrast, Mars' annual REB displays an inverted meridional distribution with significant hemispheric asymmetry. Additionally, global dust storms significantly modify the Martian REB. Our observations are employable in future studies to improve models on Mars' general circulation, meteorology, and polar ice cap evolution.