Stephanie K. Kampf, Camille S. Stevens-Rumann, Leónia Nunes, Ana Catarina Sequeira, Francisco Castro Rego, Cristina Fernández, Ana Hernández-Duarte, Clara E. Mosso, Jean Pierre Francois, Alejandro Miranda
Temperate regions around the world are experiencing longer fire weather seasons, yet trends in burned area have been inconsistent between regions. Reasons for differences in fire patterns can be difficult to determine due to variable vegetation types, land use patterns, fuel conditions, and human influences on fire ignition and suppression. This study compares burned areas to climate and fuel conditions in three temperate regions: the desert, shrub, and forest ecoregions of western North America, west-central Europe, and southwestern South America. In each region the mean annual aridity index (AI, precipitation over potential evapotranspiration) spans arid to humid climates. We examined how the fraction of area burned from 2001 to 2021 varied with mean annual AI, mean aboveground biomass, and land cover type distributions. All three regions had low fractions of area burned for the driest climate zones (AI < 0.5), a sign of fuel limitation to burned area. Fraction of area burned increased with mean aboveground biomass for these dry zones. Fraction of area burned peaked at intermediate AI (0.7–1.5) for all regions and declined again in the wettest climate zones (AI > 1.5), a sign of climate limitation to burned area. Of the three regions, western North America had the highest burned area, fraction of area burned, and fire sizes. Fragmentation of vegetation patches by the high Andes Mountains in southwestern South America and by intensive land use changes in west-central Europe likely limited fire sizes. All three regions are at risk for future wildfires, particularly in areas where fire is currently climate limited.
{"title":"Fire, Fuel, and Climate Interactions in Temperate Climates","authors":"Stephanie K. Kampf, Camille S. Stevens-Rumann, Leónia Nunes, Ana Catarina Sequeira, Francisco Castro Rego, Cristina Fernández, Ana Hernández-Duarte, Clara E. Mosso, Jean Pierre Francois, Alejandro Miranda","doi":"10.1029/2024AV001628","DOIUrl":"https://doi.org/10.1029/2024AV001628","url":null,"abstract":"<p>Temperate regions around the world are experiencing longer fire weather seasons, yet trends in burned area have been inconsistent between regions. Reasons for differences in fire patterns can be difficult to determine due to variable vegetation types, land use patterns, fuel conditions, and human influences on fire ignition and suppression. This study compares burned areas to climate and fuel conditions in three temperate regions: the desert, shrub, and forest ecoregions of western North America, west-central Europe, and southwestern South America. In each region the mean annual aridity index (AI, precipitation over potential evapotranspiration) spans arid to humid climates. We examined how the fraction of area burned from 2001 to 2021 varied with mean annual AI, mean aboveground biomass, and land cover type distributions. All three regions had low fractions of area burned for the driest climate zones (AI < 0.5), a sign of fuel limitation to burned area. Fraction of area burned increased with mean aboveground biomass for these dry zones. Fraction of area burned peaked at intermediate AI (0.7–1.5) for all regions and declined again in the wettest climate zones (AI > 1.5), a sign of climate limitation to burned area. Of the three regions, western North America had the highest burned area, fraction of area burned, and fire sizes. Fragmentation of vegetation patches by the high Andes Mountains in southwestern South America and by intensive land use changes in west-central Europe likely limited fire sizes. All three regions are at risk for future wildfires, particularly in areas where fire is currently climate limited.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 2","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001628","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143554721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan A. Añel, Ingrid Cnossen, Juan Carlos Antuña-Marrero, Gufran Beig, Matthew K. Brown, Eelco Doornbos, Scott Osprey, Shaylah Maria Mutschler, Celia Pérez Souto, Petr Šácha, Viktoria Sofieva, Laura de la Torre, Shun-Rong Zhang, Martin G. Mlynczak
Anthropogenic greenhouse gas emissions significantly impact the middle and upper atmosphere. They cause cooling and thermal shrinking and affect the atmospheric structure. Atmospheric contraction results in changes in key atmospheric features, such as the stratopause height or the peak ionospheric electron density, and also results in reduced thermosphere density. These changes can impact, among others, the lifespan of objects in low Earth orbit, refraction of radio communication and GPS signals, and the peak altitudes of meteoroids entering the Earth's atmosphere. Given this, there is a critical need for observational capabilities to monitor the middle and upper atmosphere. Equally important is the commitment to maintaining and improving long-term, homogeneous data collection. However, capabilities to observe the middle and upper atmosphere are decreasing rather than improving.
{"title":"The Need for Better Monitoring of Climate Change in the Middle and Upper Atmosphere","authors":"Juan A. Añel, Ingrid Cnossen, Juan Carlos Antuña-Marrero, Gufran Beig, Matthew K. Brown, Eelco Doornbos, Scott Osprey, Shaylah Maria Mutschler, Celia Pérez Souto, Petr Šácha, Viktoria Sofieva, Laura de la Torre, Shun-Rong Zhang, Martin G. Mlynczak","doi":"10.1029/2024AV001465","DOIUrl":"https://doi.org/10.1029/2024AV001465","url":null,"abstract":"<p>Anthropogenic greenhouse gas emissions significantly impact the middle and upper atmosphere. They cause cooling and thermal shrinking and affect the atmospheric structure. Atmospheric contraction results in changes in key atmospheric features, such as the stratopause height or the peak ionospheric electron density, and also results in reduced thermosphere density. These changes can impact, among others, the lifespan of objects in low Earth orbit, refraction of radio communication and GPS signals, and the peak altitudes of meteoroids entering the Earth's atmosphere. Given this, there is a critical need for observational capabilities to monitor the middle and upper atmosphere. Equally important is the commitment to maintaining and improving long-term, homogeneous data collection. However, capabilities to observe the middle and upper atmosphere are decreasing rather than improving.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 2","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001465","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143513807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heng Luo, Yijian Zhou, Zeyan Zhao, Mehmet Köküm, Teng Wang, Han Yue, Zexin Wang, Nan Hu, Abhijit Ghosh, Xiaodong Song, Roland Bürgmann
Faults can slip at vastly different rates, generating both high-stress-drop regular earthquakes and low-stress-drop slow slip events (SSEs). Here, we document a transitional mode of high-stress-drop but “silent” slip with two Mw