Spatial Interpolation of Seasonal Precipitations Using Rain Gauge Data and Convection-Permitting Regional Climate Model Simulations in a Complex Topographical Region

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES International Journal of Climatology Pub Date : 2024-10-27 DOI:10.1002/joc.8662
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, David Penot
{"title":"Spatial Interpolation of Seasonal Precipitations Using Rain Gauge Data and Convection-Permitting Regional Climate Model Simulations in a Complex Topographical Region","authors":"Valentin Dura,&nbsp;Guillaume Evin,&nbsp;Anne-Catherine Favre,&nbsp;David Penot","doi":"10.1002/joc.8662","DOIUrl":null,"url":null,"abstract":"<p>In mountainous areas, accurately estimating the long-term climatology of seasonal precipitations is challenging due to the lack of high-altitude rain gauges and the complexity of the topography. This study addresses these challenges by interpolating seasonal precipitation data from 3189 rain gauges across France over the 1982–2018 period, using geographical coordinates, and altitude. In this study, an additional predictor is provided from simulations of a Convection-Permitting Regional Climate Model (CP-RCM). The simulations are averaged to obtain seasonal precipitation climatology, which helps capture the relationship between topography and long-term seasonal precipitation. Geostatistical and machine learning models are evaluated within a cross-validation framework to determine the most appropriate approach to generate seasonal precipitation reference fields. Results indicate that the best model uses a machine learning approach to interpolate the ratio between long-term seasonal precipitation from observations and CP-RCM simulations. This method successfully reproduces both the mean and variance of observed data, and slightly outperforms the best geostatistical model. Moreover, incorporating the CP-RCM outputs as an explanatory variable significantly improves interpolation accuracy and altitude extrapolation, especially when the rain gauge density is low. These results imply that the commonly used altitude-precipitation relationship may be insufficient to derive seasonal precipitation fields. The CP-RCM simulations, increasingly available worldwide, present an opportunity for improving precipitation interpolation, especially in sparse and complex topographical regions.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 16","pages":"5745-5760"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8662","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8662","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In mountainous areas, accurately estimating the long-term climatology of seasonal precipitations is challenging due to the lack of high-altitude rain gauges and the complexity of the topography. This study addresses these challenges by interpolating seasonal precipitation data from 3189 rain gauges across France over the 1982–2018 period, using geographical coordinates, and altitude. In this study, an additional predictor is provided from simulations of a Convection-Permitting Regional Climate Model (CP-RCM). The simulations are averaged to obtain seasonal precipitation climatology, which helps capture the relationship between topography and long-term seasonal precipitation. Geostatistical and machine learning models are evaluated within a cross-validation framework to determine the most appropriate approach to generate seasonal precipitation reference fields. Results indicate that the best model uses a machine learning approach to interpolate the ratio between long-term seasonal precipitation from observations and CP-RCM simulations. This method successfully reproduces both the mean and variance of observed data, and slightly outperforms the best geostatistical model. Moreover, incorporating the CP-RCM outputs as an explanatory variable significantly improves interpolation accuracy and altitude extrapolation, especially when the rain gauge density is low. These results imply that the commonly used altitude-precipitation relationship may be insufficient to derive seasonal precipitation fields. The CP-RCM simulations, increasingly available worldwide, present an opportunity for improving precipitation interpolation, especially in sparse and complex topographical regions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
期刊最新文献
Issue Information Issue Information Time Series Clustering of Sea Surface Temperature in the Mediterranean and Black Sea Marine System An Elevated Influence of the Low-Latitude Drivers on the East Asian Winter Monsoon After Around 1990 Improvement in the Low Temperature Prediction Skill During Cold Winters Over the Mid–High Latitudes of Eurasia in CFSv2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1