Exploration of High-Pressure Annealing and Microwave Annealing in Palladium Germano-Silicide Formation for Si0.8Ge0.2-Based Complementary Metal-Oxide–Semiconductor Transistors

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-10-29 DOI:10.1002/adem.202401974
Tai-Chen Kuo, Michael Ira Current
{"title":"Exploration of High-Pressure Annealing and Microwave Annealing in Palladium Germano-Silicide Formation for Si0.8Ge0.2-Based Complementary Metal-Oxide–Semiconductor Transistors","authors":"Tai-Chen Kuo,&nbsp;Michael Ira Current","doi":"10.1002/adem.202401974","DOIUrl":null,"url":null,"abstract":"<p>\nIn this study, forming palladium germano-silicide on Si<sub>0.8</sub>Ge<sub>0.2</sub>-based complementary metal-oxide semiconductor (CMOS) transistors by high-pressure annealing compared to microwave annealing is investigated. Boron-doped Si<sub>0.8</sub>Ge<sub>0.2</sub> layers are epitaxially grown on n-type Si wafers, achieving an initial boron concentration of 5 × 10<sup>15</sup> cm<sup>−3</sup>, which increase to ≈6 × 10<sup>20</sup> cm<sup>−3</sup> after microwave annealing, reducing sheet resistance. Palladium is deposited using electron beam evaporation to form a 15 nm layer on Si<sub>0.8</sub>Ge<sub>0.2</sub> (200 nm)/Si (100) substrates. High-pressure annealing is conducted from 300 to 500 °C in N<sub>2</sub> ambiance at 5 kg cm<sup>−3</sup>, while microwave annealing is performed at 5.8 GHz and 1800–3000 W for 100 s. X-ray diffractometer confirms high-intensity Pd<sub>2</sub>Si phase formation, but scanning electron microscope and atomic force microscope reveal increased surface roughness and clustering after annealing. Sheet resistance increases from 10.35 Ω sq<sup>−1</sup> (unannealed) to 131.8 Ω sq<sup>−1</sup> (high-pressure annealing at 300 °C) and 85.8 Ω sq<sup>−1</sup> (microwave annealing at 1800 W). In these results, the trade-offs between annealing methods and metal choices for achieving low contact resistance and Schottky barrier heights in p-type Si<sub>0.8</sub>Ge<sub>0.2</sub> CMOS circuits are highlighted.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401974","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, forming palladium germano-silicide on Si0.8Ge0.2-based complementary metal-oxide semiconductor (CMOS) transistors by high-pressure annealing compared to microwave annealing is investigated. Boron-doped Si0.8Ge0.2 layers are epitaxially grown on n-type Si wafers, achieving an initial boron concentration of 5 × 1015 cm−3, which increase to ≈6 × 1020 cm−3 after microwave annealing, reducing sheet resistance. Palladium is deposited using electron beam evaporation to form a 15 nm layer on Si0.8Ge0.2 (200 nm)/Si (100) substrates. High-pressure annealing is conducted from 300 to 500 °C in N2 ambiance at 5 kg cm−3, while microwave annealing is performed at 5.8 GHz and 1800–3000 W for 100 s. X-ray diffractometer confirms high-intensity Pd2Si phase formation, but scanning electron microscope and atomic force microscope reveal increased surface roughness and clustering after annealing. Sheet resistance increases from 10.35 Ω sq−1 (unannealed) to 131.8 Ω sq−1 (high-pressure annealing at 300 °C) and 85.8 Ω sq−1 (microwave annealing at 1800 W). In these results, the trade-offs between annealing methods and metal choices for achieving low contact resistance and Schottky barrier heights in p-type Si0.8Ge0.2 CMOS circuits are highlighted.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高压退火和微波退火在si0.8 ge0.2基互补金属氧化物半导体晶体管中形成钯锗硅化物的探索
本文研究了在si0.8 ge0.2基互补金属氧化物半导体(CMOS)晶体管上采用高压退火和微波退火制备锗硅化钯的方法。在n型硅片上外延生长掺杂硼的Si0.8Ge0.2层,初始硼浓度为5 × 1015 cm−3,微波退火后硼浓度增加到≈6 × 1020 cm−3,降低了片材电阻。采用电子束蒸发法在Si0.8Ge0.2 (200 nm)/Si(100)衬底上沉积钯,形成15 nm的层。高压退火在300 ~ 500℃的N2环境下进行,温度为5 kg cm−3;微波退火在5.8 GHz频率下进行,温度为1800 ~ 3000 W,时间为100 s。x射线衍射证实形成了高强度的Pd2Si相,但扫描电镜和原子力显微镜显示退火后表面粗糙度和簇状增加。薄片电阻从10.35 Ω sq−1(未退火)增加到131.8 Ω sq−1(300°C高压退火)和85.8 Ω sq−1 (1800 W微波退火)。在这些结果中,强调了在p型Si0.8Ge0.2 CMOS电路中实现低接触电阻和肖特基势垒高度的退火方法和金属选择之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Issue Information Tailoring the Reaction Path: External Crack Initiation in Reactive Al/Ni Multilayers Reactive Multilayers, Their Design and Their Applications: Bonding, Debonding, Repair, Recycle Impact of Sample Preparation Approach on Transmission Electron Microscopy Investigation of Sputtered AlNi Multilayers Used for Reactive Soldering Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1