The Energy Absorption Characteristics and Sound Absorption Behavior of In Situ Integrated Aluminum Lattice Structure Filled Tubes

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-10-29 DOI:10.1002/adem.202401686
Han Wang, Kedi Wang, Pengwei Ma, Xueling Fan
{"title":"The Energy Absorption Characteristics and Sound Absorption Behavior of In Situ Integrated Aluminum Lattice Structure Filled Tubes","authors":"Han Wang,&nbsp;Kedi Wang,&nbsp;Pengwei Ma,&nbsp;Xueling Fan","doi":"10.1002/adem.202401686","DOIUrl":null,"url":null,"abstract":"<p>Lattice structures, as integrated structure-function engineering materials, have developed rapidly in industrial fields. In this study, the in situ integrated solid/hollow aluminum lattice structure filled tubes are designed and manufactured by a selective laser melting technique. The effects of structure parameters on compressive properties, energy absorption, and sound absorption are analyzed. The in situ integrated aluminum lattice structure filled tubes with hollow lattice structure and strengthened hollow lattice structure can achieve a wide adjustment of compressive property (31.04–185.64 MPa) and energy absorption density (11.21–51.70 MJ m<sup>−3</sup>) in a narrow density range. The compressive property and energy absorption are superior compared with ex situ aluminum lattice structure filled tubes due to the interaction and metallurgical bonding between the thin-walled tubes and the aluminum lattice structures. The hollow structure design and altering its structure parameters can regulate the sound absorption coefficient and the corresponding peak frequency (the highest absorption peak is 0.723 at 2098 Hz). In addition, the hollow structure design can realize double absorption peaks (0.360 at 1462 Hz and 0.503 at 2122 Hz), presenting the potential for broadband sound absorption. Eventually, superior integrated energy/sound absorption structures can be obtained by the hollow structure design and its corresponding optimization.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 23","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401686","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice structures, as integrated structure-function engineering materials, have developed rapidly in industrial fields. In this study, the in situ integrated solid/hollow aluminum lattice structure filled tubes are designed and manufactured by a selective laser melting technique. The effects of structure parameters on compressive properties, energy absorption, and sound absorption are analyzed. The in situ integrated aluminum lattice structure filled tubes with hollow lattice structure and strengthened hollow lattice structure can achieve a wide adjustment of compressive property (31.04–185.64 MPa) and energy absorption density (11.21–51.70 MJ m−3) in a narrow density range. The compressive property and energy absorption are superior compared with ex situ aluminum lattice structure filled tubes due to the interaction and metallurgical bonding between the thin-walled tubes and the aluminum lattice structures. The hollow structure design and altering its structure parameters can regulate the sound absorption coefficient and the corresponding peak frequency (the highest absorption peak is 0.723 at 2098 Hz). In addition, the hollow structure design can realize double absorption peaks (0.360 at 1462 Hz and 0.503 at 2122 Hz), presenting the potential for broadband sound absorption. Eventually, superior integrated energy/sound absorption structures can be obtained by the hollow structure design and its corresponding optimization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位集成铝晶格结构填充管的吸能特性和吸声性能
点阵结构作为一种集结构功能于一体的工程材料,在工业领域得到了迅速的发展。本研究采用选择性激光熔化技术,设计和制造了原位集成固体/空心铝晶格结构填充管。分析了结构参数对压缩性能、吸能和吸声性能的影响。采用空心点阵结构和强化空心点阵结构的原位集成铝点阵结构填充管,可在较窄的密度范围内实现较宽的压缩性能(31.04 ~ 185.64 MPa)和能量吸收密度(11.21 ~ 51.70 MJ m−3)调节。由于薄壁管与铝晶格结构之间的相互作用和冶金结合,其压缩性能和能量吸收优于非原位铝晶格结构填充管。中空结构设计和改变其结构参数可以调节吸声系数和相应的峰值频率(在2098 Hz处吸声峰值最高为0.723)。此外,中空结构设计可以实现双吸收峰(1462 Hz为0.360,2122 Hz为0.503),具有宽带吸声的潜力。通过中空结构的设计及相应的优化,最终获得更优的综合吸能/吸声结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Manufacturing of Continuous Core–Shell Hydrated Salt Fibers for Room Temperature Thermal Energy Storage An Interactive Fluid–Solid Approach for Numerical Modeling of Composite Metal Foam Behavior under Compression Masthead High-Throughput Production of Gelatin-Based Touch-Spun Nanofiber for Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1