John A. Quinlan, Kaylin Baumiller, Anandita Gaur, Wen-An Chiou, Robert W. Robey, Michael M. Gottesman, Huang-Chiao Huang
{"title":"Self-Assembled Verteporfin Nanoparticles for Photodynamic and Light-Independent Therapy in Glioblastoma","authors":"John A. Quinlan, Kaylin Baumiller, Anandita Gaur, Wen-An Chiou, Robert W. Robey, Michael M. Gottesman, Huang-Chiao Huang","doi":"10.1002/anbr.202400098","DOIUrl":null,"url":null,"abstract":"<p>\nVerteporfin (VP) has been used for photodynamic therapy (PDT) for over 20 years, and new applications have brought it back into the spotlight. VP is hydrophobic and requires lipid carriers for clinical delivery as Visudyne. A nanosuspension of VP, termed NanoVP, that requires no carriers is developed, permitting delivery of VP alone in an aqueous solution. NanoVP is produced by solvent–antisolvent precipitation, with dimethyl sulfoxide as the preferable solvent of several screened. The initial formulation has a hydrodynamic diameter of 104 ± 6.0 nm, concentration of 133 ± 10 μ<span>m</span>, polydispersity index (Pdi) of 0.12 ± 0.01, and zeta potential of −22.0 ± 0.93 mV. Seeking a concentration >500 μ<span>m</span>, a zeta potential <−10 mV, a diameter <64 nm, and a Pdi < 0.2, eight synthesis parameters are probed, identifying three that modified nanoparticle diameter and three that modified nanoparticle dispersity. The diameter is tuned fourfold from 49.0 ± 4.4 to 195 ± 7.1 nm, and the solution concentration is increased by 6.3-fold to 838 ± 45.0 μ<span>m</span>. Finally, the bioavailability and anticancer capacity of NanoVP in glioblastoma are evaluated. In all, this provides a framework for the modification of amorphous nanoparticle properties and a new formulation for clinical use of VP.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400098","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Verteporfin (VP) has been used for photodynamic therapy (PDT) for over 20 years, and new applications have brought it back into the spotlight. VP is hydrophobic and requires lipid carriers for clinical delivery as Visudyne. A nanosuspension of VP, termed NanoVP, that requires no carriers is developed, permitting delivery of VP alone in an aqueous solution. NanoVP is produced by solvent–antisolvent precipitation, with dimethyl sulfoxide as the preferable solvent of several screened. The initial formulation has a hydrodynamic diameter of 104 ± 6.0 nm, concentration of 133 ± 10 μm, polydispersity index (Pdi) of 0.12 ± 0.01, and zeta potential of −22.0 ± 0.93 mV. Seeking a concentration >500 μm, a zeta potential <−10 mV, a diameter <64 nm, and a Pdi < 0.2, eight synthesis parameters are probed, identifying three that modified nanoparticle diameter and three that modified nanoparticle dispersity. The diameter is tuned fourfold from 49.0 ± 4.4 to 195 ± 7.1 nm, and the solution concentration is increased by 6.3-fold to 838 ± 45.0 μm. Finally, the bioavailability and anticancer capacity of NanoVP in glioblastoma are evaluated. In all, this provides a framework for the modification of amorphous nanoparticle properties and a new formulation for clinical use of VP.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.