Laser excitation of the 1S–2S transition in singly-ionized helium

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-12-19 DOI:10.1038/s42005-024-01891-4
Elmer L. Gründeman, Vincent Barbé, Andrés Martínez de Velasco, Charlaine Roth, Mathieu Collombon, Julian J. Krauth, Laura S. Dreissen, Richard Taïeb, Kjeld S. E. Eikema
{"title":"Laser excitation of the 1S–2S transition in singly-ionized helium","authors":"Elmer L. Gründeman, Vincent Barbé, Andrés Martínez de Velasco, Charlaine Roth, Mathieu Collombon, Julian J. Krauth, Laura S. Dreissen, Richard Taïeb, Kjeld S. E. Eikema","doi":"10.1038/s42005-024-01891-4","DOIUrl":null,"url":null,"abstract":"Laser spectroscopy of atomic hydrogen and hydrogen-like atoms is a powerful tool for tests of fundamental physics. The 1S–2S transition of hydrogen in particular is a cornerstone for stringent Quantum Electrodynamics (QED) tests and for an accurate determination of the Rydberg constant. We report laser excitation of the 1S–2S transition in singly-ionized helium (3He+), a hydrogen-like ion with much higher sensitivity to QED than hydrogen itself. The transition requires two-photon excitation in the challenging extreme ultraviolet wavelength range, which we achieve with a tabletop coherent laser system suitable for precision spectroscopy. The transition is excited by combining an ultrafast amplified pulse at 790 nm (derived from a frequency comb laser) with its 25th harmonic at 32 nm (produced by high-harmonic generation). The results are well described by our simulations and we achieve a sizable 2S excitation fraction of 10−4 per pulse, paving the way for future precision studies. A measurement of the 1S-2S transition frequency in He+ would enable fundamental physics tests, but the required extreme ultraviolet radiation makes this a challenge. The authors observe such transition using radiation produced by high-harmonic generation of frequency comb pulses, in a manner that is compatible with future precision spectroscopy.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01891-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01891-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laser spectroscopy of atomic hydrogen and hydrogen-like atoms is a powerful tool for tests of fundamental physics. The 1S–2S transition of hydrogen in particular is a cornerstone for stringent Quantum Electrodynamics (QED) tests and for an accurate determination of the Rydberg constant. We report laser excitation of the 1S–2S transition in singly-ionized helium (3He+), a hydrogen-like ion with much higher sensitivity to QED than hydrogen itself. The transition requires two-photon excitation in the challenging extreme ultraviolet wavelength range, which we achieve with a tabletop coherent laser system suitable for precision spectroscopy. The transition is excited by combining an ultrafast amplified pulse at 790 nm (derived from a frequency comb laser) with its 25th harmonic at 32 nm (produced by high-harmonic generation). The results are well described by our simulations and we achieve a sizable 2S excitation fraction of 10−4 per pulse, paving the way for future precision studies. A measurement of the 1S-2S transition frequency in He+ would enable fundamental physics tests, but the required extreme ultraviolet radiation makes this a challenge. The authors observe such transition using radiation produced by high-harmonic generation of frequency comb pulses, in a manner that is compatible with future precision spectroscopy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单电离氦中1S-2S跃迁的激光激发
原子氢和类氢原子的激光光谱是基础物理测试的有力工具。特别是氢的1S-2S跃迁是严格的量子电动力学(QED)测试和精确测定里德伯常数的基石。我们报道了单电离氦(3He+)的1S-2S跃迁的激光激发,这是一种比氢本身对QED的灵敏度高得多的类氢离子。这种转变需要在极紫外波长范围内的双光子激发,我们用适合精密光谱的桌面相干激光系统实现了这一目标。这种跃迁是通过结合790nm的超快放大脉冲(来自频率梳激光器)和32nm的25次谐波(由高谐波产生)来激发的。我们的模拟结果很好地描述了我们的结果,并且我们实现了每个脉冲10−4的相当大的2S激励分数,为未来的精确研究铺平了道路。测量He+中的1S-2S跃迁频率将使基础物理测试成为可能,但所需的极端紫外线辐射使这成为一个挑战。作者使用频率梳状脉冲的高谐波产生的辐射来观察这种转变,这种方式与未来的精密光谱学兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1