Atomistic origin of the entropy of melting from inelastic neutron scattering and machine learned molecular dynamics

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-12-19 DOI:10.1038/s43246-024-00695-x
Camille M. Bernal-Choban, Vladimir Ladygin, Garrett E. Granroth, Claire N. Saunders, Stefan H. Lohaus, Douglas L. Abernathy, Jiao YY. Lin, Brent Fultz
{"title":"Atomistic origin of the entropy of melting from inelastic neutron scattering and machine learned molecular dynamics","authors":"Camille M. Bernal-Choban, Vladimir Ladygin, Garrett E. Granroth, Claire N. Saunders, Stefan H. Lohaus, Douglas L. Abernathy, Jiao YY. Lin, Brent Fultz","doi":"10.1038/s43246-024-00695-x","DOIUrl":null,"url":null,"abstract":"The latent heat, L, is central to melting, but its atomic origin remains elusive. It is proportional to the entropy of fusion, ΔSfus = L/Tm (Tm is the melting temperature), which depends on changes of atom configurations, atom vibrations, and thermal electron excitations. Here, we combine inelastic neutron scattering and machine-learned molecular dynamics to separate ΔSfus into these components for Ge, Si, Bi, Sn, Pb, and Li. When the vibrational entropy of melting, ΔSvib, is zero, ΔSfus ≃ 1.2 kB per atom. This result provides a baseline for ΔSconfig and nearly coincides with “Richard’s Rule” of melting. The ΔSfus deviates from this value for most elements, however, and we show that this deviation originates with extra ΔSvib and extra ΔSconfig. These two components are correlated for positive and negative deviations from Richard’s rule – the extra ΔSconfig is consistently  ~ 80% of ΔSvib. Our results, interpreted with potential energy landscape theory, imply a correlation between the change in the number of basins and the change in the inverse of their curvature for the melting of pure elements. The atomistic components that drive entropy of fusion and ultimately characterize latent heat of melting are not well defined. Here, inelastic neutron scattering and machine-learned molecular dynamics are used to quantify these thermodynamic contributions to the entropy of fusion in pure elements.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00695-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00695-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The latent heat, L, is central to melting, but its atomic origin remains elusive. It is proportional to the entropy of fusion, ΔSfus = L/Tm (Tm is the melting temperature), which depends on changes of atom configurations, atom vibrations, and thermal electron excitations. Here, we combine inelastic neutron scattering and machine-learned molecular dynamics to separate ΔSfus into these components for Ge, Si, Bi, Sn, Pb, and Li. When the vibrational entropy of melting, ΔSvib, is zero, ΔSfus ≃ 1.2 kB per atom. This result provides a baseline for ΔSconfig and nearly coincides with “Richard’s Rule” of melting. The ΔSfus deviates from this value for most elements, however, and we show that this deviation originates with extra ΔSvib and extra ΔSconfig. These two components are correlated for positive and negative deviations from Richard’s rule – the extra ΔSconfig is consistently  ~ 80% of ΔSvib. Our results, interpreted with potential energy landscape theory, imply a correlation between the change in the number of basins and the change in the inverse of their curvature for the melting of pure elements. The atomistic components that drive entropy of fusion and ultimately characterize latent heat of melting are not well defined. Here, inelastic neutron scattering and machine-learned molecular dynamics are used to quantify these thermodynamic contributions to the entropy of fusion in pure elements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从非弹性中子散射和机器学习分子动力学看熔化熵的原子论起源
潜热L是熔化的核心,但它的原子起源仍然难以捉摸。它与聚变熵成正比,ΔSfus = L/Tm (Tm为熔化温度),它取决于原子构型、原子振动和热电子激发的变化。在这里,我们结合了非弹性中子散射和机器学习的分子动力学,将ΔSfus分解为Ge、Si、Bi、Sn、Pb和Li的这些成分。当熔化的振动熵ΔSvib为零时,ΔSfus ;这一结果为ΔSconfig提供了一个基线,几乎与熔点的“理查德法则”一致。然而,对于大多数元素,ΔSfus偏离了这个值,我们表明这种偏离源于额外的ΔSvib和额外的ΔSconfig。这两个组成部分与理查德规则的正、负偏差相关——额外的ΔSconfig始终是ΔSvib的80% ~ ;我们的研究结果,用势能景观理论解释,暗示了盆地数量的变化与纯元素融化时它们的曲率反比的变化之间的相关性。驱动聚变熵和最终表征熔化潜热的原子成分还没有很好地定义。在这里,非弹性中子散射和机器学习分子动力学被用来量化这些对纯元素聚变熵的热力学贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma. Discovery of giant unit-cell super-structure in the infinite-layer nickelate PrNiO2+x. Enhanced energy storage in relaxor (1-x)Bi0.5Na0.5TiO3-xBaZryTi1-yO3 thin films by morphotropic phase boundary engineering. Regular red-green-blue InGaN quantum wells with In content up to 40% grown on InGaN nanopyramids Grain boundary cracks patching and defect dual passivation with ammonium formate for high-efficiency triple-cation perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1