Memristors based on two-dimensional h-BN materials: synthesis, mechanism, optimization and application

IF 9.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY npj 2D Materials and Applications Pub Date : 2024-12-19 DOI:10.1038/s41699-024-00519-z
Shaojie Zhang, Ye Tao, Shiwei Qin, Dong Li, Kunkun Cao, Lin Lv, Guokun Ma, Yiheng Rao, Houzhao Wan, Wang Hao
{"title":"Memristors based on two-dimensional h-BN materials: synthesis, mechanism, optimization and application","authors":"Shaojie Zhang, Ye Tao, Shiwei Qin, Dong Li, Kunkun Cao, Lin Lv, Guokun Ma, Yiheng Rao, Houzhao Wan, Wang Hao","doi":"10.1038/s41699-024-00519-z","DOIUrl":null,"url":null,"abstract":"Memristors offer vast application opportunities in storage, logic devices, and computation due to their nonvolatility, low power consumption, and fast operational speeds. Two-dimensional materials, characterized by their novel mechanisms, ultra-thin channels, high mechanical flexibility, and superior electrical properties, demonstrate immense potential in the domain of high-density, fast, and energy-efficient memristors. Hexagonal boron nitride (h-BN), as a new two-dimensional material, has the characteristics of high thermal conductivity, flexibility, and low power consumption, and has a significant application prospect in the field of memristor. In this paper, the recent research progress of the h-BN memristor is reviewed from the aspects of device fabrication, resistance mechanism, and application prospect.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-25"},"PeriodicalIF":9.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00519-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00519-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Memristors offer vast application opportunities in storage, logic devices, and computation due to their nonvolatility, low power consumption, and fast operational speeds. Two-dimensional materials, characterized by their novel mechanisms, ultra-thin channels, high mechanical flexibility, and superior electrical properties, demonstrate immense potential in the domain of high-density, fast, and energy-efficient memristors. Hexagonal boron nitride (h-BN), as a new two-dimensional material, has the characteristics of high thermal conductivity, flexibility, and low power consumption, and has a significant application prospect in the field of memristor. In this paper, the recent research progress of the h-BN memristor is reviewed from the aspects of device fabrication, resistance mechanism, and application prospect.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj 2D Materials and Applications
npj 2D Materials and Applications Engineering-Mechanics of Materials
CiteScore
14.50
自引率
2.10%
发文量
80
审稿时长
15 weeks
期刊介绍: npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.
期刊最新文献
First-principles study of the magneto-Raman effect in van der Waals layered magnets Memristors based on two-dimensional h-BN materials: synthesis, mechanism, optimization and application Revisiting the origin of non-volatile resistive switching in MoS2 atomristor Theory of magnetotrion-polaritons in transition metal dichalcogenide monolayers Transient dynamics and long-range transport of 2D exciton with managed potential disorder and phonon scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1