Haruna Kurogi, Nobumasa Takasugi, Sho Kubota, Ashutosh Kumar, Takehiro Suzuki, Naoshi Dohmae, Daisuke Sawada, Kam Y.J. Zhang and Takashi Uehara*,
{"title":"Discovery of a Compound That Inhibits IRE1α S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress","authors":"Haruna Kurogi, Nobumasa Takasugi, Sho Kubota, Ashutosh Kumar, Takehiro Suzuki, Naoshi Dohmae, Daisuke Sawada, Kam Y.J. Zhang and Takashi Uehara*, ","doi":"10.1021/acschembio.4c0040310.1021/acschembio.4c00403","DOIUrl":null,"url":null,"abstract":"<p >Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes <i>S</i>-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, <i>S</i>-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the <i>S</i>-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the <i>S</i>-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified <i>S</i>-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"19 12","pages":"2429–2437 2429–2437"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acschembio.4c00403","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschembio.4c00403","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.