High-Throughput Computer Screen Aids Discovery of Methotrexate as miR-20b Inhibitor to Suppress Nonsmall Cell Lung Cancer Progression.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2025-01-17 Epub Date: 2024-12-30 DOI:10.1021/acschembio.4c00706
Xiaorui Shi, Chong Hu, Liangli Fan, Bin Guo, Jingyu Zhang, Chu Tang, Fu Wang
{"title":"High-Throughput Computer Screen Aids Discovery of Methotrexate as miR-20b Inhibitor to Suppress Nonsmall Cell Lung Cancer Progression.","authors":"Xiaorui Shi, Chong Hu, Liangli Fan, Bin Guo, Jingyu Zhang, Chu Tang, Fu Wang","doi":"10.1021/acschembio.4c00706","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) play a significant role in tumor progression, and regulating miRNA expression with small molecules may offer a new approach to cancer therapy. Among them, miRNA-20b has been found to be dysregulated in several cancers, including nonsmall cell lung cancer (NSCLC). Herein, an in silico high-throughput computer screen was conducted to identify small molecules that downregulate miR-20b using the three-dimensional structure of the Dicer binding site on pre-miR-20b. Among 1058 small molecule compounds, Methotrexate (MTX), was discovered to be a potential miR-20b-specific inhibitor, which has been found to suppress miR-20b by specifically blocking Dicer processing in p53 wild-type A549 NSCLC cells but not in H1299 cells with p53 depletion. MTX effectively inhibited the proliferation, survival, migration, and invasion of A549 cells in a dose-dependent manner. Furthermore, the treatment of MTX up-regulated the expression of miR-20b target genes PTEN, STAT3, and HIF1α. Notably, MTX also significantly inhibited tumor growth in a mouse xenograft tumor model of NSCLC, with no observed tissue toxicity. Our findings indicate that MTX may have a novel role as an established drug in p53 wild-type NSCLC tumor therapy by down-regulating miR-20b expression. These findings are expected to provide preclinical evidence for miR-20b-targeting NSCLC therapeutic strategies.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"208-218"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00706","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNAs (miRNAs) play a significant role in tumor progression, and regulating miRNA expression with small molecules may offer a new approach to cancer therapy. Among them, miRNA-20b has been found to be dysregulated in several cancers, including nonsmall cell lung cancer (NSCLC). Herein, an in silico high-throughput computer screen was conducted to identify small molecules that downregulate miR-20b using the three-dimensional structure of the Dicer binding site on pre-miR-20b. Among 1058 small molecule compounds, Methotrexate (MTX), was discovered to be a potential miR-20b-specific inhibitor, which has been found to suppress miR-20b by specifically blocking Dicer processing in p53 wild-type A549 NSCLC cells but not in H1299 cells with p53 depletion. MTX effectively inhibited the proliferation, survival, migration, and invasion of A549 cells in a dose-dependent manner. Furthermore, the treatment of MTX up-regulated the expression of miR-20b target genes PTEN, STAT3, and HIF1α. Notably, MTX also significantly inhibited tumor growth in a mouse xenograft tumor model of NSCLC, with no observed tissue toxicity. Our findings indicate that MTX may have a novel role as an established drug in p53 wild-type NSCLC tumor therapy by down-regulating miR-20b expression. These findings are expected to provide preclinical evidence for miR-20b-targeting NSCLC therapeutic strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高通量计算机筛选有助于发现甲氨蝶呤作为miR-20b抑制剂抑制非小细胞肺癌进展。
MicroRNAs (miRNAs)在肿瘤进展中发挥着重要作用,用小分子调控miRNA的表达可能为癌症治疗提供新的途径。其中,miRNA-20b已被发现在包括非小细胞肺癌(NSCLC)在内的几种癌症中出现失调。本文利用pre-miR-20b上Dicer结合位点的三维结构,利用高通量计算机屏幕识别下调miR-20b的小分子。在1058种小分子化合物中,甲氨蝶呤(MTX)被发现是一种潜在的miR-20b特异性抑制剂,其在p53野生型A549 NSCLC细胞中通过特异性阻断Dicer加工来抑制miR-20b,而在p53缺失的H1299细胞中则不起作用。MTX能有效抑制A549细胞的增殖、存活、迁移和侵袭,并呈剂量依赖性。此外,MTX处理上调miR-20b靶基因PTEN、STAT3和HIF1α的表达。值得注意的是,MTX还显著抑制非小细胞肺癌小鼠异种移植肿瘤模型的肿瘤生长,没有观察到组织毒性。我们的研究结果表明,MTX可能通过下调miR-20b的表达,在p53野生型NSCLC肿瘤治疗中作为一种既定药物发挥新的作用。这些发现有望为mir -20b靶向NSCLC治疗策略提供临床前证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Imatinib
阿拉丁
Abemaciclib
阿拉丁
Abemaciclib
阿拉丁
Imatinib
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Insights into Free Drug Release from Efficacious N-Acyl O-Aminophenol Duocarmycin Prodrugs. Alternative Approach to Sequence-Specific Recognition of DNA: Cooperative Stacking of Dication Dimers─Sensitivity to Compound Curvature, Aromatic Structure, and DNA Sequence. Blm10-Based Compounds Add to the Knowledge of How Allosteric Modulators Influence Human 20S Proteasome. siRNA-Mimetic Ratiometric pH (sMiRpH) Probes for Improving Cell Delivery and mRNA Knockdown. Analogs of NIH Molecular Probe ML283 Are Potent SARS-CoV-2 Helicase Inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1