Artificial intelligence guided search for van der Waals materials with high optical anisotropy.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2024-12-20 DOI:10.1039/d4mh01332h
Liudmila A Bereznikova, Ivan A Kruglov, Georgy A Ermolaev, Ivan Trofimov, Congwei Xie, Arslan Mazitov, Gleb Tselikov, Anton Minnekhanov, Alexey P Tsapenko, Maxim Povolotsky, Davit A Ghazaryan, Aleksey V Arsenin, Valentyn S Volkov, Kostya S Novoselov
{"title":"Artificial intelligence guided search for van der Waals materials with high optical anisotropy.","authors":"Liudmila A Bereznikova, Ivan A Kruglov, Georgy A Ermolaev, Ivan Trofimov, Congwei Xie, Arslan Mazitov, Gleb Tselikov, Anton Minnekhanov, Alexey P Tsapenko, Maxim Povolotsky, Davit A Ghazaryan, Aleksey V Arsenin, Valentyn S Volkov, Kostya S Novoselov","doi":"10.1039/d4mh01332h","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of van der Waals (vdW) materials, renowned for their unique optical properties, is pivotal for advanced photonics. These materials exhibit exceptional optical anisotropy, both in-plane and out-of-plane, making them an ideal platform for novel photonic applications. However, the manual search for vdW materials with giant optical anisotropy is a labor-intensive process unsuitable for the fast screening of materials with unique properties. Here, we leverage geometrical and machine learning (ML) approaches to streamline this search, employing deep learning architectures, including the recently developed Atomistic Line Graph Neural Network. Within the geometrical approach, we clustered vdW materials based on in-plane and out-of-plane birefringence values and correlated optical anisotropy with crystallographic parameters. The more accurate ML model demonstrates high predictive capability, validated through density functional theory and ellipsometry measurements. Experimental verification with 2H-MoTe<sub>2</sub> and CdPS<sub>3</sub> confirms the theoretical predictions, underscoring the potential of ML in discovering and optimizing vdW materials with unprecedented optical performance.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01332h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration of van der Waals (vdW) materials, renowned for their unique optical properties, is pivotal for advanced photonics. These materials exhibit exceptional optical anisotropy, both in-plane and out-of-plane, making them an ideal platform for novel photonic applications. However, the manual search for vdW materials with giant optical anisotropy is a labor-intensive process unsuitable for the fast screening of materials with unique properties. Here, we leverage geometrical and machine learning (ML) approaches to streamline this search, employing deep learning architectures, including the recently developed Atomistic Line Graph Neural Network. Within the geometrical approach, we clustered vdW materials based on in-plane and out-of-plane birefringence values and correlated optical anisotropy with crystallographic parameters. The more accurate ML model demonstrates high predictive capability, validated through density functional theory and ellipsometry measurements. Experimental verification with 2H-MoTe2 and CdPS3 confirms the theoretical predictions, underscoring the potential of ML in discovering and optimizing vdW materials with unprecedented optical performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能引导高光学各向异性范德华材料的搜索。
范德华(vdW)材料以其独特的光学特性而闻名,其探索对先进光子学至关重要。这些材料在平面内和面外都表现出特殊的光学各向异性,使它们成为新型光子应用的理想平台。然而,人工搜索具有巨大光学各向异性的vdW材料是一个劳动密集型的过程,不适合快速筛选具有独特性能的材料。在这里,我们利用几何和机器学习(ML)方法来简化搜索,采用深度学习架构,包括最近开发的原子线图神经网络。在几何方法中,我们基于面内和面外双折射率值对vdW材料进行聚类,并将光学各向异性与晶体学参数相关联。通过密度泛函理论和椭偏测量验证了更精确的ML模型具有较高的预测能力。用2H-MoTe2和CdPS3进行的实验验证证实了理论预测,强调了ML在发现和优化具有前所未有光学性能的vdW材料方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Neuromorphic devices for electronic skin applications. Optimizing optical anisotropy in low-dimensional structures via intralayer hydrogen bonding modulation and anionic substitution. A linearly programmable strategy for polymer elastomer mechanics. Critical role of pore size on perfluorooctanoic acid adsorption behaviors in carbonaceous sorbents. Advances in small droplets manipulation on bio-inspired slippery surfaces: chances and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1