Conflict resolution behavior of autonomous vehicles at intersections under mixed traffic environment.

IF 5.7 1区 工程技术 Q1 ERGONOMICS Accident; analysis and prevention Pub Date : 2024-12-18 DOI:10.1016/j.aap.2024.107897
Md Tanvir Ashraf, Kakan Dey
{"title":"Conflict resolution behavior of autonomous vehicles at intersections under mixed traffic environment.","authors":"Md Tanvir Ashraf, Kakan Dey","doi":"10.1016/j.aap.2024.107897","DOIUrl":null,"url":null,"abstract":"<p><p>Navigating intersections is a major challenge for autonomous vehicles (AVs) because of the complex interactions between different roadway user types, conflicting movements, and diverse operational and geometric features. This study investigated intersection-related AV-involved traffic conflicts by analyzing the Arogoverse-2 motion forecasting dataset to understand the driving behavior of AVs at intersections. The conflict scenarios were categorized into AV-involved and no AV conflict scenarios. Depending on whether AVs passed the conflict region first or second in AV-involved scenarios, AV-involved scenarios were further classified into AV-first and AV-second scenarios. An agglomerative hierarchical clustering with t-SNE dimension reduction technique was applied to categorize the driving styles, and a three-layer Bayesian hierarchical model was applied to analyze the effect of driving volatility measures and traffic characteristics on relative crash risks. The clustering result showed that about 29% of the conflict events in the AV-first scenario (human-driven vehicle (HDV) was the following vehicle in passing the conflict region) exhibited high-risk of conflicts. In contrast, all conflicts events in the AV-second category were either low-risk or medium-risk conflicts. Parameter estimates showed that AVs had safer interactions with the other roadway users (i.e., HDVs, pedestrians/cyclists) while maintaining higher speeds and uniform driving profiles. AV's interaction with vulnerable road users (i.e., pedestrians and cyclists) showed lower crash risk compared to HDVs, indicating AV's safer driving behavior. AVs also demonstrated safer conflict resolution behavior in performing unprotected left turns compared to HDVs. This study discovered some unique insights into the challenges of introducing AVs in diverse intersection types (i.e., signalized, unsignalized, stop-controlled), which can be used to identify AV technology's improvement need to better adapt to the mixed traffic driving environment.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107897"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.aap.2024.107897","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Navigating intersections is a major challenge for autonomous vehicles (AVs) because of the complex interactions between different roadway user types, conflicting movements, and diverse operational and geometric features. This study investigated intersection-related AV-involved traffic conflicts by analyzing the Arogoverse-2 motion forecasting dataset to understand the driving behavior of AVs at intersections. The conflict scenarios were categorized into AV-involved and no AV conflict scenarios. Depending on whether AVs passed the conflict region first or second in AV-involved scenarios, AV-involved scenarios were further classified into AV-first and AV-second scenarios. An agglomerative hierarchical clustering with t-SNE dimension reduction technique was applied to categorize the driving styles, and a three-layer Bayesian hierarchical model was applied to analyze the effect of driving volatility measures and traffic characteristics on relative crash risks. The clustering result showed that about 29% of the conflict events in the AV-first scenario (human-driven vehicle (HDV) was the following vehicle in passing the conflict region) exhibited high-risk of conflicts. In contrast, all conflicts events in the AV-second category were either low-risk or medium-risk conflicts. Parameter estimates showed that AVs had safer interactions with the other roadway users (i.e., HDVs, pedestrians/cyclists) while maintaining higher speeds and uniform driving profiles. AV's interaction with vulnerable road users (i.e., pedestrians and cyclists) showed lower crash risk compared to HDVs, indicating AV's safer driving behavior. AVs also demonstrated safer conflict resolution behavior in performing unprotected left turns compared to HDVs. This study discovered some unique insights into the challenges of introducing AVs in diverse intersection types (i.e., signalized, unsignalized, stop-controlled), which can be used to identify AV technology's improvement need to better adapt to the mixed traffic driving environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.90
自引率
16.90%
发文量
264
审稿时长
48 days
期刊介绍: Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.
期刊最新文献
A comprehensive multi-objective framework for the estimation of crash frequency models. Conflict resolution behavior of autonomous vehicles at intersections under mixed traffic environment. Investigating the contributing factors to autonomous Vehicle-Road user Conflicts: A Data-Driven approach. Analysis of factors affecting pedestrian safety for the elderly and identification of vulnerable areas in Seoul. How does distraction affect cyclists' severe crashes? A hybrid CatBoost-SHAP and random parameters binary logit approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1