Driving behavior is crucial in shaping traffic dynamics and serves as the foundation for safe and efficient autonomous driving. Despite the widespread interest in driving behavior modeling, existing models often focus on specific behaviors and cannot describe all types of vehicle movements, while vehicle status and driving scenarios are dynamic and infinite. That means comprehending and modeling generalized driving behavior mechanisms is essential. Risk Homeostasis Theory (RHT) emerges as a compelling conceptual framework to explain human risk behaviors comprehensively. The critical problem in modeling behavior using RHT is quantifying the subject risk precepted by humans. RHT has been applied in car-following behavior modeling based on the one-dimensional risk indicator Safety Margin (SM), simplifying the specific behavior along its direction. While the generalized perceived risk indicator on the two-dimensional surface still lacks. Considering the collision avoidance capacity from the driver's perspective, this paper proposes the two-dimensional safety margin (TSM) to describe the driver's risk perception in generalized driving scenarios with two-dimensional movements. Results demonstrate that TSM could accurately describe car-following behavior compared to existing risk indicators, with a 9.1 % correlation improvement and the reasonably calibrated response time (1.07 s). And TSM could effectively capture the discrepant risk perceptions of different drivers involved in the same conflict, underscoring the alignment of TSM with drivers' subjective risk perceptions. Besides, TSM reflects the risk homeostasis of driving behaviors, as both typical scenarios have the normally distributed and concentrated target levels. Further, TSM also achieves a generalized, scenario-independent risk quantification with a mean target level of 0.85. As a good representation of driver's risk perception in two-dimensional scenarios, TSM serves as a crucial basis in areas such as driving behavior modeling, and decision-making and testing of autonomous driving.
{"title":"How do drivers perceive collision risk? A quantitative exploration in generalized two-dimensional scenarios.","authors":"Jinghua Wang, Guangquan Lu, Wenmin Long, Zhao Zhang, Miaomiao Liu, Yong Xia","doi":"10.1016/j.aap.2024.107879","DOIUrl":"10.1016/j.aap.2024.107879","url":null,"abstract":"<p><p>Driving behavior is crucial in shaping traffic dynamics and serves as the foundation for safe and efficient autonomous driving. Despite the widespread interest in driving behavior modeling, existing models often focus on specific behaviors and cannot describe all types of vehicle movements, while vehicle status and driving scenarios are dynamic and infinite. That means comprehending and modeling generalized driving behavior mechanisms is essential. Risk Homeostasis Theory (RHT) emerges as a compelling conceptual framework to explain human risk behaviors comprehensively. The critical problem in modeling behavior using RHT is quantifying the subject risk precepted by humans. RHT has been applied in car-following behavior modeling based on the one-dimensional risk indicator Safety Margin (SM), simplifying the specific behavior along its direction. While the generalized perceived risk indicator on the two-dimensional surface still lacks. Considering the collision avoidance capacity from the driver's perspective, this paper proposes the two-dimensional safety margin (TSM) to describe the driver's risk perception in generalized driving scenarios with two-dimensional movements. Results demonstrate that TSM could accurately describe car-following behavior compared to existing risk indicators, with a 9.1 % correlation improvement and the reasonably calibrated response time (1.07 s). And TSM could effectively capture the discrepant risk perceptions of different drivers involved in the same conflict, underscoring the alignment of TSM with drivers' subjective risk perceptions. Besides, TSM reflects the risk homeostasis of driving behaviors, as both typical scenarios have the normally distributed and concentrated target levels. Further, TSM also achieves a generalized, scenario-independent risk quantification with a mean target level of 0.85. As a good representation of driver's risk perception in two-dimensional scenarios, TSM serves as a crucial basis in areas such as driving behavior modeling, and decision-making and testing of autonomous driving.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107879"},"PeriodicalIF":5.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-13DOI: 10.1016/j.aap.2024.107896
Ali Agheli, Kayvan Aghabayk
Cyclists are among the most vulnerable road users, increasingly subject to various sources of distraction, including the use of mobile phones and engagement in other tasks while navigating urban environments. Understanding and mitigating the impact of these distractions on cyclist safety is crucial. Despite the importance of this issue, the effect of distraction on injury severity in cycling crashes has not been extensively studied. This research analyzes four years of U.S. crash data (2019-2022) from the Crash Report Sampling System (CRSS) database, employing a hybrid framework that integrates CatBoost-based SHAP algorithm and the random parameters binary logit model with heterogeneity in means and variances (RPBL-HMV). The proposed approach confirms the significant role of cyclist distraction in crash injury severity. Subsequently, the analysis identifies several factors influencing the likelihood of severe injuries in distracted cyclist crashes. Crashes involving the front of motor vehicles, occurring in rural areas, on two-way roads, at higher speed limits, and during weekends were associated with a higher probability of severe injuries. Conversely, crashes at T-intersections, involving the side or rear of motor vehicles, where cyclists wore helmets, or during rush hour were linked to a reduced likelihood of severe injuries. Notably, interaction effects reveal nuanced patterns. For instance, while crossing roadway actions and rush hour periods individually decrease the likelihood of severe crashes, their combination increases the probability of such outcomes. The findings suggest targeted safety measures and policy interventions aimed at enhancing cyclist safety and promoting safer cycling environments by mitigating distraction-related risks.
骑自行车的人是最易受伤害的道路使用者之一,他们越来越多地受到各种因素的干扰,包括在城市环境中使用手机和从事其他工作。了解并减轻这些分心对骑车人安全的影响至关重要。尽管这一问题非常重要,但分心对骑车撞车事故中受伤严重程度的影响尚未得到广泛研究。本研究分析了来自碰撞报告采样系统(CRSS)数据库的四年(2019-2022 年)美国碰撞数据,采用了一个混合框架,该框架集成了基于 CatBoost 的 SHAP 算法和具有均值和方差异质性的随机参数二元 Logit 模型(RPBL-HMV)。所提出的方法证实了骑车人分心在碰撞伤害严重程度中的重要作用。随后,分析确定了影响分心骑车者撞车严重受伤可能性的几个因素。涉及机动车前部、发生在农村地区、双向道路上、限速较高以及周末的碰撞事故与较高的重伤概率相关。相反,在 T 型交叉路口发生的、涉及机动车侧面或后部的、骑车人戴头盔的或在上下班高峰期发生的撞车事故则与严重受伤的可能性降低有关。值得注意的是,交互效应揭示了细微的模式。例如,虽然横穿马路的行为和上下班高峰期会单独降低发生严重撞车事故的可能性,但两者结合则会增加发生此类事故的可能性。研究结果建议采取有针对性的安全措施和政策干预措施,通过降低与分心有关的风险来提高骑车人的安全,并促进更安全的骑车环境。
{"title":"How does distraction affect cyclists' severe crashes? A hybrid CatBoost-SHAP and random parameters binary logit approach.","authors":"Ali Agheli, Kayvan Aghabayk","doi":"10.1016/j.aap.2024.107896","DOIUrl":"10.1016/j.aap.2024.107896","url":null,"abstract":"<p><p>Cyclists are among the most vulnerable road users, increasingly subject to various sources of distraction, including the use of mobile phones and engagement in other tasks while navigating urban environments. Understanding and mitigating the impact of these distractions on cyclist safety is crucial. Despite the importance of this issue, the effect of distraction on injury severity in cycling crashes has not been extensively studied. This research analyzes four years of U.S. crash data (2019-2022) from the Crash Report Sampling System (CRSS) database, employing a hybrid framework that integrates CatBoost-based SHAP algorithm and the random parameters binary logit model with heterogeneity in means and variances (RPBL-HMV). The proposed approach confirms the significant role of cyclist distraction in crash injury severity. Subsequently, the analysis identifies several factors influencing the likelihood of severe injuries in distracted cyclist crashes. Crashes involving the front of motor vehicles, occurring in rural areas, on two-way roads, at higher speed limits, and during weekends were associated with a higher probability of severe injuries. Conversely, crashes at T-intersections, involving the side or rear of motor vehicles, where cyclists wore helmets, or during rush hour were linked to a reduced likelihood of severe injuries. Notably, interaction effects reveal nuanced patterns. For instance, while crossing roadway actions and rush hour periods individually decrease the likelihood of severe crashes, their combination increases the probability of such outcomes. The findings suggest targeted safety measures and policy interventions aimed at enhancing cyclist safety and promoting safer cycling environments by mitigating distraction-related risks.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107896"},"PeriodicalIF":5.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-04DOI: 10.1016/j.aap.2024.107874
Khashayar Kazemzadeh
Shared spaces prioritise the role of micromobility in urban environments by separating vulnerable road users from motorised vehicles, aiming to enhance both actual and perceived safety. However, the presence of various transport modes, such as pedestrians, cyclists and e-scooters, with differing navigation behaviours, increases the heterogeneity of these spaces and impacts the perception of safety. Despite the increasing use of e-scooters, the safety perceptions of e-scooter riders remain largely underexplored in the literature. In response, I conducted an online video experiment and polled 920 e-scooter users in Sweden to assess their safety perceptions when interacting exclusively with cyclists. I collected data on socio-demographics, travel habits, crash history, and responses to hypothetical video scenarios depicting interactions in shared spaces, where e-scooter riders overtake or meet cyclists. I then employed a random effect latent class ordered logit model to quantify the determinants of e-scooter riders' safety perceptions. The findings indicate that women feel less safe in shared spaces compared to men. Additionally, the direction of encounters significantly affected young adults, who perceived meeting other users as more unsafe than overtaking them. These findings highlight the importance of accounting for unobserved heterogeneity in safety perceptions, emphasise the significant role of demographic variables in understanding users' safety perceptions, and reinforce the need for inclusive design of shared spaces for all road users.
{"title":"Assessing e-scooter rider safety perceptions in shared spaces: Evidence from a video experiment in Sweden.","authors":"Khashayar Kazemzadeh","doi":"10.1016/j.aap.2024.107874","DOIUrl":"10.1016/j.aap.2024.107874","url":null,"abstract":"<p><p>Shared spaces prioritise the role of micromobility in urban environments by separating vulnerable road users from motorised vehicles, aiming to enhance both actual and perceived safety. However, the presence of various transport modes, such as pedestrians, cyclists and e-scooters, with differing navigation behaviours, increases the heterogeneity of these spaces and impacts the perception of safety. Despite the increasing use of e-scooters, the safety perceptions of e-scooter riders remain largely underexplored in the literature. In response, I conducted an online video experiment and polled 920 e-scooter users in Sweden to assess their safety perceptions when interacting exclusively with cyclists. I collected data on socio-demographics, travel habits, crash history, and responses to hypothetical video scenarios depicting interactions in shared spaces, where e-scooter riders overtake or meet cyclists. I then employed a random effect latent class ordered logit model to quantify the determinants of e-scooter riders' safety perceptions. The findings indicate that women feel less safe in shared spaces compared to men. Additionally, the direction of encounters significantly affected young adults, who perceived meeting other users as more unsafe than overtaking them. These findings highlight the importance of accounting for unobserved heterogeneity in safety perceptions, emphasise the significant role of demographic variables in understanding users' safety perceptions, and reinforce the need for inclusive design of shared spaces for all road users.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107874"},"PeriodicalIF":5.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-07DOI: 10.1016/j.aap.2024.107865
Reuben Tamakloe, Mahdi Khorasani, Inhi Kim
<p><p>The population of elderly individuals (over 64 years) in Seoul, South Korea, grew from 1.4 million to 1.7 million between 2018 and 2023. During the same period, the number of elderly taxi drivers rose from 27,739 to 35,166. Additionally, the number of fatal and severe injury (FSI) crashes caused by at-fault elderly taxi drivers has steadily increased, surpassing those caused by non-elderly taxi drivers since the onset of the COVID-19 pandemic. This shift has raised safety concerns among transportation authorities and the public. Previous studies have explored the factors influencing taxi driver crash injury severity outcomes; however, there has been little focus on investigating the stability of these factors over time and across taxi driver age groups. This study examines the stability of factors influencing taxi driver at-fault crash injury severity outcomes and the differences between elderly and non-elderly taxi driver at-fault crash severities using data from Seoul, South Korea (2017-2023). Risk factor stability across taxi driver at-fault age groups and time periods was assessed using log-likelihood ratio tests, which revealed that these factors were not stable, highlighting the need for estimating separate models. Separate statistical models were developed using the random parameters binary logit framework to examine the associations between risk factors and FSI outcomes. This approach allowed us to account for potential heterogeneity in the means of the random parameters for both elderly and non-elderly taxi driver at-fault crashes across different periods: pre-, during, and post-COVID-19. Factors such as midnight to early morning hours, dry roads, signal violations, elderly not-at-fault parties, and posted speed limits of 80 km/h increased the likelihood of FSI outcomes in most models. The results showed that the indicator for elderly not-at-fault drivers increased the probability of FSI outcomes the most when involved in a crash with elderly at-fault taxi drivers. Additionally, the probability of FSI outcomes was highest for elderly at-fault taxi drivers who violated traffic signals. Heterogeneity analysis revealed that intersection-related taxi driver at-fault crashes were likely to be more FSI on weekdays. Out-of-sample simulations demonstrated a clear difference in injury severities between elderly and non-elderly taxi drivers, with non-elderly taxi drivers predicting fewer FSI outcomes in recent years. Key measures to improve taxi safety for drivers over 64 include introducing free and mandatory assessments to ensure that taxi drivers are fit for the profession. Additionally, taxi management companies could implement fatigue and distracted driving detection systems to monitor driving behavior, especially during midnight and early morning hours. Collected data could be used to incentivize elderly taxi drivers to maintain safe driving practices. Further, introducing more flexible or reduced hours, part-time shifts, and retiremen
{"title":"Differences in injury severities between elderly and non-elderly taxi driver at-fault crashes: Temporal instability and out-of-sample prediction.","authors":"Reuben Tamakloe, Mahdi Khorasani, Inhi Kim","doi":"10.1016/j.aap.2024.107865","DOIUrl":"10.1016/j.aap.2024.107865","url":null,"abstract":"<p><p>The population of elderly individuals (over 64 years) in Seoul, South Korea, grew from 1.4 million to 1.7 million between 2018 and 2023. During the same period, the number of elderly taxi drivers rose from 27,739 to 35,166. Additionally, the number of fatal and severe injury (FSI) crashes caused by at-fault elderly taxi drivers has steadily increased, surpassing those caused by non-elderly taxi drivers since the onset of the COVID-19 pandemic. This shift has raised safety concerns among transportation authorities and the public. Previous studies have explored the factors influencing taxi driver crash injury severity outcomes; however, there has been little focus on investigating the stability of these factors over time and across taxi driver age groups. This study examines the stability of factors influencing taxi driver at-fault crash injury severity outcomes and the differences between elderly and non-elderly taxi driver at-fault crash severities using data from Seoul, South Korea (2017-2023). Risk factor stability across taxi driver at-fault age groups and time periods was assessed using log-likelihood ratio tests, which revealed that these factors were not stable, highlighting the need for estimating separate models. Separate statistical models were developed using the random parameters binary logit framework to examine the associations between risk factors and FSI outcomes. This approach allowed us to account for potential heterogeneity in the means of the random parameters for both elderly and non-elderly taxi driver at-fault crashes across different periods: pre-, during, and post-COVID-19. Factors such as midnight to early morning hours, dry roads, signal violations, elderly not-at-fault parties, and posted speed limits of 80 km/h increased the likelihood of FSI outcomes in most models. The results showed that the indicator for elderly not-at-fault drivers increased the probability of FSI outcomes the most when involved in a crash with elderly at-fault taxi drivers. Additionally, the probability of FSI outcomes was highest for elderly at-fault taxi drivers who violated traffic signals. Heterogeneity analysis revealed that intersection-related taxi driver at-fault crashes were likely to be more FSI on weekdays. Out-of-sample simulations demonstrated a clear difference in injury severities between elderly and non-elderly taxi drivers, with non-elderly taxi drivers predicting fewer FSI outcomes in recent years. Key measures to improve taxi safety for drivers over 64 include introducing free and mandatory assessments to ensure that taxi drivers are fit for the profession. Additionally, taxi management companies could implement fatigue and distracted driving detection systems to monitor driving behavior, especially during midnight and early morning hours. Collected data could be used to incentivize elderly taxi drivers to maintain safe driving practices. Further, introducing more flexible or reduced hours, part-time shifts, and retiremen","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107865"},"PeriodicalIF":5.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-31DOI: 10.1016/j.aap.2024.107908
B M Tazbiul Hassan Anik, Mohamed Abdel-Aty, Zubayer Islam
Intersections are frequently identified as crash hotspots for roadways in major cities, leading to significant human casualties. We propose crash likelihood prediction as an effective strategy to proactively prevent intersection crashes. So far, no reliable models have been developed for intersections that effectively account for the variation in crash types and the cyclical nature of Signal Phasing and Timing (SPaT) and traffic flow. Moreover, the limited research available has primarily relied on sampling techniques to address data imbalance, without exploring alternative solutions. We develop an anomaly detection framework by integrating Generative Adversarial Networks (GANs) and Transformers to predict the likelihood of cycle-level crashes at intersections. The model is built using high-resolution event data extracted from Automated Traffic Signal Performance Measures (ATSPM), including SPaT and traffic flow insights from 11 intersections in Seminole County, Florida. Our framework demonstrates a sensitivity of 76% in predicting crash events using highly imbalanced crash data along with real-world SPaT and traffic data, highlighting its potential for deployment at smart intersections. Overall, the results provide a roadmap for city-wide implementation at smart intersections, with the potential for multiple real-time solutions for impending crashes. These include adjustments in signal timing, driver warnings using various means, and more efficient emergency response, all with major implications for creating more livable and safe cities.
{"title":"Can we realize seamless traffic safety at smart intersections by predicting and preventing impending crashes?","authors":"B M Tazbiul Hassan Anik, Mohamed Abdel-Aty, Zubayer Islam","doi":"10.1016/j.aap.2024.107908","DOIUrl":"10.1016/j.aap.2024.107908","url":null,"abstract":"<p><p>Intersections are frequently identified as crash hotspots for roadways in major cities, leading to significant human casualties. We propose crash likelihood prediction as an effective strategy to proactively prevent intersection crashes. So far, no reliable models have been developed for intersections that effectively account for the variation in crash types and the cyclical nature of Signal Phasing and Timing (SPaT) and traffic flow. Moreover, the limited research available has primarily relied on sampling techniques to address data imbalance, without exploring alternative solutions. We develop an anomaly detection framework by integrating Generative Adversarial Networks (GANs) and Transformers to predict the likelihood of cycle-level crashes at intersections. The model is built using high-resolution event data extracted from Automated Traffic Signal Performance Measures (ATSPM), including SPaT and traffic flow insights from 11 intersections in Seminole County, Florida. Our framework demonstrates a sensitivity of 76% in predicting crash events using highly imbalanced crash data along with real-world SPaT and traffic data, highlighting its potential for deployment at smart intersections. Overall, the results provide a roadmap for city-wide implementation at smart intersections, with the potential for multiple real-time solutions for impending crashes. These include adjustments in signal timing, driver warnings using various means, and more efficient emergency response, all with major implications for creating more livable and safe cities.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107908"},"PeriodicalIF":5.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-31DOI: 10.1016/j.aap.2024.107891
Qiang Fu, Xiaohua Zhao, Chen Chen, Wenhao Ren
Mixed platoon with a human-driven leading vehicle may be a transition mode prior to the widespread adoption of fully autonomous platoon. Enhancing the driving safety of the leading vehicle driver is crucial for improving the overall operational safety of the mixed platoon. Predictive-Forward-Collision-Warning (PFCW), an emerging technology in transportation, holds promise in mitigating collision risks for drivers by presenting traffic information beyond their immediate visual range. However, the influence characteristics of this function and how it influences the evolution of collision risk in leading vehicle driver remain unclear. Therefore, this paper attempts to analyse the quantitative impact of PFCW on the collision risk of leading vehicle driver. A test platform for connected mixed platoon was built utilizing driving simulation technology, alongside the development of a connected Human-Machine Interface (HMI) incorporating PFCW functionality. To evaluate the longitudinal collision risk of leading vehicle driver, a time-frequency analysis method was employed, focusing on key indicators: deceleration rate to avoid collision (DRAC), time to collision (TTC), and proportion of stopping distance (PSD). The time-domain analysis results indicated that PFCW can significantly mitigate the collision risk of leading vehicle. Wavelet transform results demonstrated that PFCW can ameliorate drivers' abnormal driving behavior and mitigate the collision risk in emergency situation of impending collision moment. Meanwhile, PFCW can enhance the overall operation safety of the mixed platoon. This paper leverages driving simulation technology and multidimensional indicators to analyze the quantitative impact of PFCW on the collision risk of leading vehicle driver during rapid deceleration of preceding vehicles. The findings can guide the development of test standards for connected mixed platoon, the promotion and application of PFCW, and the advancement of Navigate on Autopilot (NOA). Additionally, the test platform and framework developed in this study can accommodate various experimental needs for connected mixed platoon testing.
{"title":"How predictive-forward-collision-warning reduces the collision risk of leading vehicle driver.","authors":"Qiang Fu, Xiaohua Zhao, Chen Chen, Wenhao Ren","doi":"10.1016/j.aap.2024.107891","DOIUrl":"10.1016/j.aap.2024.107891","url":null,"abstract":"<p><p>Mixed platoon with a human-driven leading vehicle may be a transition mode prior to the widespread adoption of fully autonomous platoon. Enhancing the driving safety of the leading vehicle driver is crucial for improving the overall operational safety of the mixed platoon. Predictive-Forward-Collision-Warning (PFCW), an emerging technology in transportation, holds promise in mitigating collision risks for drivers by presenting traffic information beyond their immediate visual range. However, the influence characteristics of this function and how it influences the evolution of collision risk in leading vehicle driver remain unclear. Therefore, this paper attempts to analyse the quantitative impact of PFCW on the collision risk of leading vehicle driver. A test platform for connected mixed platoon was built utilizing driving simulation technology, alongside the development of a connected Human-Machine Interface (HMI) incorporating PFCW functionality. To evaluate the longitudinal collision risk of leading vehicle driver, a time-frequency analysis method was employed, focusing on key indicators: deceleration rate to avoid collision (DRAC), time to collision (TTC), and proportion of stopping distance (PSD). The time-domain analysis results indicated that PFCW can significantly mitigate the collision risk of leading vehicle. Wavelet transform results demonstrated that PFCW can ameliorate drivers' abnormal driving behavior and mitigate the collision risk in emergency situation of impending collision moment. Meanwhile, PFCW can enhance the overall operation safety of the mixed platoon. This paper leverages driving simulation technology and multidimensional indicators to analyze the quantitative impact of PFCW on the collision risk of leading vehicle driver during rapid deceleration of preceding vehicles. The findings can guide the development of test standards for connected mixed platoon, the promotion and application of PFCW, and the advancement of Navigate on Autopilot (NOA). Additionally, the test platform and framework developed in this study can accommodate various experimental needs for connected mixed platoon testing.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107891"},"PeriodicalIF":5.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-06DOI: 10.1016/j.aap.2024.107870
Quan Li, Yiran Luo, Siyuan Liu, Tianle Lu, Liangliang Shi, Wei Ji, Yong Han, Hong Wang, Bingbing Nie
Intelligent safety systems (ISS) for autonomous vehicles, integrating advanced perception capabilities and passive protection devices, are expected to reshape traditional pedestrian safety systems and play a key role in reducing the risk of pedestrian injuries in traffic accidents. However, traditional active control and passive protection modules remain disconnected due to insufficient evidence supporting the effectiveness of collaborative strategies in integrated systems, particularly concerning activation criteria and timing. This study aims to address this gap by developing a comprehensive ISS that incorporates advanced perception systems, a vehicle dynamic control module, and controllable passive safety devices. Furthermore, the study evaluates the efficacy of trigger strategies in minimizing injury risks in various safety systems including Automatic Emergency Braking (AEB), Automatic Emergency Steering (AES), and ISS. To achieve this, we reconstructed the dynamics of pedestrian-vehicle interactions before collisions by examining 23 detailed collision cases. These cases were selected from real-world accident databases and included clear video recordings and detailed injury reports. Additionally, we analyzed the boundary conditions for collision avoidance by constructing vehicle steering and braking avoidance models. Our findings indicate that, in real-world accidents, the average Time-to-Collision (TTC) required for drivers to avoid collisions is -3.15 ± 1.00 s. In contrast, the AEB system requires -1.06 ± 0.23 s, and the AES system requires -0.44 ± 0.14 s. Building on this, we developed injury risk models for the system activation, predicting collision risks at various TTCs and pedestrian injury risks. The pedestrian injury risk prediction model effectively forecasts the risk of AIS3 + head injuries resulting from collisions between pedestrians aged 20 to 70 years and the vehicle hood. The threshold for a severe AIS3 + head injury risk is set at 10 %, with a trigger TTC of the ISS at -0.60 ± 0.20 s. When the system is activated at a TTC of -0.5 s, it can reduce the probability of severe head injury to pedestrians by 59 %. The design of the ISS shows significant potential for enhancing pedestrian safety. The findings of this research can offer guidance for the activation strategies of passive safety devices based on input signals from advanced perception systems in AVs.
{"title":"Activation strategies and effectiveness of Intelligent safety systems for reducing pedestrian injuries in autonomous vehicles.","authors":"Quan Li, Yiran Luo, Siyuan Liu, Tianle Lu, Liangliang Shi, Wei Ji, Yong Han, Hong Wang, Bingbing Nie","doi":"10.1016/j.aap.2024.107870","DOIUrl":"10.1016/j.aap.2024.107870","url":null,"abstract":"<p><p>Intelligent safety systems (ISS) for autonomous vehicles, integrating advanced perception capabilities and passive protection devices, are expected to reshape traditional pedestrian safety systems and play a key role in reducing the risk of pedestrian injuries in traffic accidents. However, traditional active control and passive protection modules remain disconnected due to insufficient evidence supporting the effectiveness of collaborative strategies in integrated systems, particularly concerning activation criteria and timing. This study aims to address this gap by developing a comprehensive ISS that incorporates advanced perception systems, a vehicle dynamic control module, and controllable passive safety devices. Furthermore, the study evaluates the efficacy of trigger strategies in minimizing injury risks in various safety systems including Automatic Emergency Braking (AEB), Automatic Emergency Steering (AES), and ISS. To achieve this, we reconstructed the dynamics of pedestrian-vehicle interactions before collisions by examining 23 detailed collision cases. These cases were selected from real-world accident databases and included clear video recordings and detailed injury reports. Additionally, we analyzed the boundary conditions for collision avoidance by constructing vehicle steering and braking avoidance models. Our findings indicate that, in real-world accidents, the average Time-to-Collision (TTC) required for drivers to avoid collisions is -3.15 ± 1.00 s. In contrast, the AEB system requires -1.06 ± 0.23 s, and the AES system requires -0.44 ± 0.14 s. Building on this, we developed injury risk models for the system activation, predicting collision risks at various TTCs and pedestrian injury risks. The pedestrian injury risk prediction model effectively forecasts the risk of AIS3 + head injuries resulting from collisions between pedestrians aged 20 to 70 years and the vehicle hood. The threshold for a severe AIS3 + head injury risk is set at 10 %, with a trigger TTC of the ISS at -0.60 ± 0.20 s. When the system is activated at a TTC of -0.5 s, it can reduce the probability of severe head injury to pedestrians by 59 %. The design of the ISS shows significant potential for enhancing pedestrian safety. The findings of this research can offer guidance for the activation strategies of passive safety devices based on input signals from advanced perception systems in AVs.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107870"},"PeriodicalIF":5.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2025-01-09DOI: 10.1016/j.aap.2025.107917
Li Song, Shijie Li, Qiming Yang, Bing Liu, Nengchao Lyu, Wei David Fan
Speeding crashes remain high injury severities after the stay-at-home order in California, highlighting a need for further investigation into the fundamental cause of this increment. To systematically explore the temporal impacts of the stay-at-home order on speeding behaviors and the corresponding crash-injury outcomes, this study utilizes California-reported single-vehicle speeding crashes on freeways (access-controlled) and non-freeways (non-access-controlled) before, during, and after the order. Significant injury factors and in-depth heterogeneity across observations are identified by random parameter logit models with heterogeneity in means and variances. Without segmenting the data by periods, the partially temporally constrained approach is employed to statistically determine varying and stabilized parameters over time through the whole dataset. Different likelihood ratio tests reveal significant temporal instabilities and stabilities of factors between two roadways and three periods. The potential impacts of observation selection issues on the marginal effect calculations of the partially constrained models are also systematically investigated. Significant variations in the probability of severe injury rate per week after the order are also found based on the Mann-Whitney U tests. The hysteretic effects of the order on the crash frequency and severity are observed on both freeways and non-freeways. Overall, seven variables are found to have stable effects, while fifteen variables exhibit unstable effects over time. Significant temporal variations in driver behaviors, including driving under the influence, cell phone usage, hit-and-run, failure to use seat belt, entering or leaving the ramp, and reaction to previous collisions, are observed before, during, or after the order. Specific countermeasures and effects of heterogeneity in means and variances are also discussed. These findings provide insights into understanding the temporal impacts of the stay-at-home order on injury severities, which are valuable to decision-makers and researchers for future order practice, restriction improvement, and complementary policy development.
{"title":"Partially temporally constrained modeling of speeding crash-injury severities on freeways and non-freeways before, during, and after the stay-at-home order.","authors":"Li Song, Shijie Li, Qiming Yang, Bing Liu, Nengchao Lyu, Wei David Fan","doi":"10.1016/j.aap.2025.107917","DOIUrl":"10.1016/j.aap.2025.107917","url":null,"abstract":"<p><p>Speeding crashes remain high injury severities after the stay-at-home order in California, highlighting a need for further investigation into the fundamental cause of this increment. To systematically explore the temporal impacts of the stay-at-home order on speeding behaviors and the corresponding crash-injury outcomes, this study utilizes California-reported single-vehicle speeding crashes on freeways (access-controlled) and non-freeways (non-access-controlled) before, during, and after the order. Significant injury factors and in-depth heterogeneity across observations are identified by random parameter logit models with heterogeneity in means and variances. Without segmenting the data by periods, the partially temporally constrained approach is employed to statistically determine varying and stabilized parameters over time through the whole dataset. Different likelihood ratio tests reveal significant temporal instabilities and stabilities of factors between two roadways and three periods. The potential impacts of observation selection issues on the marginal effect calculations of the partially constrained models are also systematically investigated. Significant variations in the probability of severe injury rate per week after the order are also found based on the Mann-Whitney U tests. The hysteretic effects of the order on the crash frequency and severity are observed on both freeways and non-freeways. Overall, seven variables are found to have stable effects, while fifteen variables exhibit unstable effects over time. Significant temporal variations in driver behaviors, including driving under the influence, cell phone usage, hit-and-run, failure to use seat belt, entering or leaving the ramp, and reaction to previous collisions, are observed before, during, or after the order. Specific countermeasures and effects of heterogeneity in means and variances are also discussed. These findings provide insights into understanding the temporal impacts of the stay-at-home order on injury severities, which are valuable to decision-makers and researchers for future order practice, restriction improvement, and complementary policy development.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107917"},"PeriodicalIF":5.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cooperative control of intersection signals and connected automated vehicles (CAVs) possess the potential for safety enhancement and congestion alleviation, facilitating the integration of CAVs into urban intelligent transportation systems. This research proposes an innovative deep reinforcement learning-based (DRL) cooperative control framework, including signal and speed modules, to dynamically adapt signal timing and CAV velocities for traffic safety and efficiency optimization. Among the DRL-based signal modules, a traffic state prediction model is merged with the current state to augment characteristics and the agent-learning process. A multi-objective reward function is designed to evaluate safety and efficiency using a traffic conflict prediction model and vehicle waiting time. The double deep Q network (DDQN) model is used to design the agent observing the traffic state, learning the optimal signal control policy, and then inputting the signal phase into the speed module. Based on the green duration analysis and constraints of mixed traffic flow of CAVs and human-driven vehicles, a speed planning model is constructed to optimize CAVs' speed and alter traffic state, which in turn affects the agent's next signal decisions. The proposed framework is tested at isolated intersections simulated by two real-world intersections in Changsha, China. The results reveal the superiority of the proposed method over DRL-based traffic signal control (DRL-TSC) in terms of coverage speed and computation time. Compared to actuated signal control, adaptive traffic signal control, and DRL-TSC, the proposed method significantly optimizes traffic safety and efficiency across diverse intersections, temporal spans, and traffic demands. Furthermore, the advantage of the proposed method substantially amplifies with the increased CAV penetration, regardless of the intersection types.
{"title":"Cooperative control of self-learning traffic signal and connected automated vehicles for safety and efficiency optimization at intersections.","authors":"Gongquan Zhang, Fengze Li, Dian Ren, Helai Huang, Zilong Zhou, Fangrong Chang","doi":"10.1016/j.aap.2024.107890","DOIUrl":"10.1016/j.aap.2024.107890","url":null,"abstract":"<p><p>Cooperative control of intersection signals and connected automated vehicles (CAVs) possess the potential for safety enhancement and congestion alleviation, facilitating the integration of CAVs into urban intelligent transportation systems. This research proposes an innovative deep reinforcement learning-based (DRL) cooperative control framework, including signal and speed modules, to dynamically adapt signal timing and CAV velocities for traffic safety and efficiency optimization. Among the DRL-based signal modules, a traffic state prediction model is merged with the current state to augment characteristics and the agent-learning process. A multi-objective reward function is designed to evaluate safety and efficiency using a traffic conflict prediction model and vehicle waiting time. The double deep Q network (DDQN) model is used to design the agent observing the traffic state, learning the optimal signal control policy, and then inputting the signal phase into the speed module. Based on the green duration analysis and constraints of mixed traffic flow of CAVs and human-driven vehicles, a speed planning model is constructed to optimize CAVs' speed and alter traffic state, which in turn affects the agent's next signal decisions. The proposed framework is tested at isolated intersections simulated by two real-world intersections in Changsha, China. The results reveal the superiority of the proposed method over DRL-based traffic signal control (DRL-TSC) in terms of coverage speed and computation time. Compared to actuated signal control, adaptive traffic signal control, and DRL-TSC, the proposed method significantly optimizes traffic safety and efficiency across diverse intersections, temporal spans, and traffic demands. Furthermore, the advantage of the proposed method substantially amplifies with the increased CAV penetration, regardless of the intersection types.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107890"},"PeriodicalIF":5.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-31DOI: 10.1016/j.aap.2024.107880
Mohammad Anis, Sixu Li, Srinivas R Geedipally, Yang Zhou, Dominique Lord
Near-miss traffic risk estimation using Extreme Value Theory (EVT) models within a real-time framework offers a promising alternative to traditional historical crash-based methods. However, current approaches often lack comprehensive analysis that integrates diverse roadway geometries, crash patterns, and two-dimensional (2D) vehicle dynamics, limiting both their accuracy and generalizability. This study addresses these gaps by employing a high-fidelity, 2D time-to-collision (TTC) near-miss indicator derived from autonomous vehicle (AV) sensor data. The proposed framework uses univariate Generalized Extreme Value (UGEV) distribution models applied to a subset of the Waymo motion dataset across six arterial networks in San Francisco, Phoenix, and Los Angeles. Extreme events are identified through the Block Maxima (BM) sampling-based approach from each conflicting pair, with 20s block sizes to account for the scarcity of samples in short-duration traffic segments. The framework also incorporates conflicting vehicle dynamics (e.g., speed, acceleration, and deceleration) as covariates within a non-stationary hierarchical Bayesian structure with random parameters (HBSRP) UGEV models, allowing for the effective management of vehicle spatial, temporal, and behavioral heterogeneity. Results show that HBSRP-UGEV models outperform other approaches, with a 6.43-10.56% decrease in DIC, especially for near-miss events in short-duration traffic segments. The inclusion of dynamic vehicle behaviors and random effects substantially enhances the model's capability to estimate real-time traffic risks. This generalized real-time EVT model bridges the gap between active and passive safety measures, offering a precise and adaptable tool for network-level traffic safety analysis.
{"title":"Real-time risk estimation for active road safety: Leveraging Waymo AV sensor data with hierarchical Bayesian extreme value models.","authors":"Mohammad Anis, Sixu Li, Srinivas R Geedipally, Yang Zhou, Dominique Lord","doi":"10.1016/j.aap.2024.107880","DOIUrl":"10.1016/j.aap.2024.107880","url":null,"abstract":"<p><p>Near-miss traffic risk estimation using Extreme Value Theory (EVT) models within a real-time framework offers a promising alternative to traditional historical crash-based methods. However, current approaches often lack comprehensive analysis that integrates diverse roadway geometries, crash patterns, and two-dimensional (2D) vehicle dynamics, limiting both their accuracy and generalizability. This study addresses these gaps by employing a high-fidelity, 2D time-to-collision (TTC) near-miss indicator derived from autonomous vehicle (AV) sensor data. The proposed framework uses univariate Generalized Extreme Value (UGEV) distribution models applied to a subset of the Waymo motion dataset across six arterial networks in San Francisco, Phoenix, and Los Angeles. Extreme events are identified through the Block Maxima (BM) sampling-based approach from each conflicting pair, with 20s block sizes to account for the scarcity of samples in short-duration traffic segments. The framework also incorporates conflicting vehicle dynamics (e.g., speed, acceleration, and deceleration) as covariates within a non-stationary hierarchical Bayesian structure with random parameters (HBSRP) UGEV models, allowing for the effective management of vehicle spatial, temporal, and behavioral heterogeneity. Results show that HBSRP-UGEV models outperform other approaches, with a 6.43-10.56% decrease in DIC, especially for near-miss events in short-duration traffic segments. The inclusion of dynamic vehicle behaviors and random effects substantially enhances the model's capability to estimate real-time traffic risks. This generalized real-time EVT model bridges the gap between active and passive safety measures, offering a precise and adaptable tool for network-level traffic safety analysis.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107880"},"PeriodicalIF":5.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}