Bacteriophage treatment is effective against carbapenem-resistant Klebsiella pneumoniae (KPC) in a neutropenic murine model of gastrointestinal translocation and renal infection.

IF 4.1 2区 医学 Q2 MICROBIOLOGY Antimicrobial Agents and Chemotherapy Pub Date : 2024-12-20 DOI:10.1128/aac.00919-24
Panagiotis Zagaliotis, Jordyn Michalik-Provasek, Eleftheria Mavridou, Ethan Naing, Ioannis S Vizirianakis, Dimitrios Chatzidimitriou, Jason J Gill, Thomas J Walsh
{"title":"Bacteriophage treatment is effective against carbapenem-resistant <i>Klebsiella pneumoniae</i> (KPC) in a neutropenic murine model of gastrointestinal translocation and renal infection.","authors":"Panagiotis Zagaliotis, Jordyn Michalik-Provasek, Eleftheria Mavridou, Ethan Naing, Ioannis S Vizirianakis, Dimitrios Chatzidimitriou, Jason J Gill, Thomas J Walsh","doi":"10.1128/aac.00919-24","DOIUrl":null,"url":null,"abstract":"<p><p>Carbapenemase-producing <i>Klebsiella pneumoniae</i> (KPC) are globally emerging pathogens that cause life-threatening infections. Novel treatment alternatives are urgently needed. We therefore investigated the effectiveness of three novel bacteriophages (Spivey, Pharr, and Soft) in a neutropenic murine model of KPC gastrointestinal colonization, translocation, and disseminated infection. Bacteriophage efficacy was determined by residual bacterial burden of KPC (CFU/g) in kidneys. Parallel studies were conducted of bacteriophage pharmacokinetics and resistance. Treatment of mice with 5 × 10<sup>9</sup> PFU of phage cocktail via intraperitoneal injection was effective in significantly reducing renal KPC CFU by 100-fold (<i>P</i> < 0.01) when administered every 24 h and 1000-fold (<i>P</i> < 0.01) every 12 h. Moreover, a combination of bacteriophage and ceftazidime-avibactam produced a synergistic effect, resulting in a 10<sup>5</sup>-fold reduction in bacterial burden in cecum and kidney (<i>P</i> < 0.001 in both tissues). Prophylactic administration of bacteriophages via oral gavage did not prevent KPC translocation to the kidneys. Bacteriophage decay determined by linear regression of the ln of mean concentrations demonstrated R<sup>2</sup> values in plasma of 0.941, kidney 0.976, and cecum 0.918, with half-lives of t<sub>1/2</sub> = 2.5 h. Furthermore, a phage-resistant mutant displayed increased sensitivity to serum killing <i>in vitro</i>, but did not show significant defects in renal infection <i>in vivo</i>. A combination of bacteriophages demonstrated significant efficacy alone and synergy with ceftazidime/avibactam in the treatment of experimental disseminated KPC infection in neutropenic mice.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0091924"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.00919-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbapenemase-producing Klebsiella pneumoniae (KPC) are globally emerging pathogens that cause life-threatening infections. Novel treatment alternatives are urgently needed. We therefore investigated the effectiveness of three novel bacteriophages (Spivey, Pharr, and Soft) in a neutropenic murine model of KPC gastrointestinal colonization, translocation, and disseminated infection. Bacteriophage efficacy was determined by residual bacterial burden of KPC (CFU/g) in kidneys. Parallel studies were conducted of bacteriophage pharmacokinetics and resistance. Treatment of mice with 5 × 109 PFU of phage cocktail via intraperitoneal injection was effective in significantly reducing renal KPC CFU by 100-fold (P < 0.01) when administered every 24 h and 1000-fold (P < 0.01) every 12 h. Moreover, a combination of bacteriophage and ceftazidime-avibactam produced a synergistic effect, resulting in a 105-fold reduction in bacterial burden in cecum and kidney (P < 0.001 in both tissues). Prophylactic administration of bacteriophages via oral gavage did not prevent KPC translocation to the kidneys. Bacteriophage decay determined by linear regression of the ln of mean concentrations demonstrated R2 values in plasma of 0.941, kidney 0.976, and cecum 0.918, with half-lives of t1/2 = 2.5 h. Furthermore, a phage-resistant mutant displayed increased sensitivity to serum killing in vitro, but did not show significant defects in renal infection in vivo. A combination of bacteriophages demonstrated significant efficacy alone and synergy with ceftazidime/avibactam in the treatment of experimental disseminated KPC infection in neutropenic mice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
8.20%
发文量
762
审稿时长
3 months
期刊介绍: Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.
期刊最新文献
Bacteriophage treatment is effective against carbapenem-resistant Klebsiella pneumoniae (KPC) in a neutropenic murine model of gastrointestinal translocation and renal infection. SARS-CoV-2 resistance analyses from the Phase 3 PINETREE study of remdesivir treatment in nonhospitalized participants. The gene MAB_2362 is responsible for intrinsic resistance to various drugs and virulence in Mycobacterium abscessus by regulating cell division. Impact of the inoculum size on the in vivo activity of the aztreonam-avibactam combination in a murine model of peritonitis due to Escherichia coli expressing CTX-M-15 and NDM-1. Population pharmacokinetics of piperacillin-tazobactam in the plasma and cerebrospinal fluid of critically ill patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1