Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Archives of biochemistry and biophysics Pub Date : 2024-12-17 DOI:10.1016/j.abb.2024.110274
Naveed Hussain, Halina Mikolajek, Peter J Harrison, Neil Paterson, Muhammad W Akhtar, Saima Sadaf, James H Naismith
{"title":"Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification.","authors":"Naveed Hussain, Halina Mikolajek, Peter J Harrison, Neil Paterson, Muhammad W Akhtar, Saima Sadaf, James H Naismith","doi":"10.1016/j.abb.2024.110274","DOIUrl":null,"url":null,"abstract":"<p><p>Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C. The enzyme exhibited a high level of processivity on RAC and retained over 90% activity at 80°C for an extended period, indicating exceptional thermal stability. The 1.20 Å crystal structure of the Tt_End5A catalytic domain revealed an archetypal glycoside hydrolase family 5 (GH5) catalytic TIM-(β/α)<sub>8</sub>-barrel, supplemented with additional β-strands, elongated α-helices, and a rare cis-non-Pro (His481-cis-Ala482) peptide. A large central cleft was observed in the 3D structure, which is likely related to the enzyme's multifunctionality and processivity. The catalytic domain is preceded by a novel N-terminal multivalent carbohydrate-binding module (CBM) that enhances the enzymatic degradation of insoluble polysaccharides. Mutagenesis studies, ligand interaction analyses, and the structurally conserved positions of E329 and E448 in Tt_End5A suggest that these residues function as the proton donor and nucleophile in the catalytic mechanism. Owing to its multifunctionality and processivity, Tt_End5A can reduce the need for multiple saccharification enzymes to generate fermentable sugars from plant biomass for bioethanol production. Additionally, it holds promise for applications in the pharmaceutical, feed, and food industries.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110274"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.abb.2024.110274","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C. The enzyme exhibited a high level of processivity on RAC and retained over 90% activity at 80°C for an extended period, indicating exceptional thermal stability. The 1.20 Å crystal structure of the Tt_End5A catalytic domain revealed an archetypal glycoside hydrolase family 5 (GH5) catalytic TIM-(β/α)8-barrel, supplemented with additional β-strands, elongated α-helices, and a rare cis-non-Pro (His481-cis-Ala482) peptide. A large central cleft was observed in the 3D structure, which is likely related to the enzyme's multifunctionality and processivity. The catalytic domain is preceded by a novel N-terminal multivalent carbohydrate-binding module (CBM) that enhances the enzymatic degradation of insoluble polysaccharides. Mutagenesis studies, ligand interaction analyses, and the structurally conserved positions of E329 and E448 in Tt_End5A suggest that these residues function as the proton donor and nucleophile in the catalytic mechanism. Owing to its multifunctionality and processivity, Tt_End5A can reduce the need for multiple saccharification enzymes to generate fermentable sugars from plant biomass for bioethanol production. Additionally, it holds promise for applications in the pharmaceutical, feed, and food industries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物质糖化的 Thermogutta terrifontis 广特异性内切葡聚糖酶的结构和功能快照
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
期刊最新文献
Decoding KRAS Dynamics: Exploring the Impact of Mutations and Inhibitor Binding. Exosomal signaling in cancer metastasis: Molecular insights and therapeutic opportunities. Kinetic studies of bifurcating flavoproteins. Altering substrate specificity of a thermostable bacterial monoamine oxidase by structure-based mutagenesis. MiR-495 reverses in the mechanical unloading, random rotating and aging induced muscle atrophy via targeting MyoD and inactivating the Myostatin/TGF-β/Smad3 axis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1