Gaofeng Qin, Rongqiang Song, Jingyi Sun, Bing Chen, Zhe Liu, Lei Han, Baoliang Sun, Chen Li
{"title":"Investigating the therapeutic effects of Shenzhiling oral liquid on Alzheimer's disease: a network pharmacology and experimental approach.","authors":"Gaofeng Qin, Rongqiang Song, Jingyi Sun, Bing Chen, Zhe Liu, Lei Han, Baoliang Sun, Chen Li","doi":"10.1007/s13205-024-04181-6","DOIUrl":null,"url":null,"abstract":"<p><p>There is currently no effective treatment for Alzheimer's disease (AD). This research explored Shenzhiling Oral Liquid (SZLD) against AD by pinpointing crucial elements and understanding its molecular mechanisms through network pharmacology and in vitro experiment. First, we used network pharmacology to screen the main targets and mechanisms of SZLD to improve AD. Then we conducted experiments with Aβ42-induced SH-SY5Y cells to assess SZLD's impact, focusing particularly on apoptotic pathways, thereby uncovering its mechanism of action in AD. Through our analysis, we discovered a notable link between SZLD's effect on AD and apoptosis processes. Specifically, the critical proteins Casapse3 and BCL-2 showed strong correlations in this context. Through systematic data analysis and experimental verification, we unveiled the healing advantages and the foundational molecular mechanisms of SZLD in AD. These findings underscore the promising and compelling potential of targeting the PI3K/Akt signaling pathway and apoptosis with SZLD as a therapeutic strategy to ameliorate AD.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"14"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04181-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is currently no effective treatment for Alzheimer's disease (AD). This research explored Shenzhiling Oral Liquid (SZLD) against AD by pinpointing crucial elements and understanding its molecular mechanisms through network pharmacology and in vitro experiment. First, we used network pharmacology to screen the main targets and mechanisms of SZLD to improve AD. Then we conducted experiments with Aβ42-induced SH-SY5Y cells to assess SZLD's impact, focusing particularly on apoptotic pathways, thereby uncovering its mechanism of action in AD. Through our analysis, we discovered a notable link between SZLD's effect on AD and apoptosis processes. Specifically, the critical proteins Casapse3 and BCL-2 showed strong correlations in this context. Through systematic data analysis and experimental verification, we unveiled the healing advantages and the foundational molecular mechanisms of SZLD in AD. These findings underscore the promising and compelling potential of targeting the PI3K/Akt signaling pathway and apoptosis with SZLD as a therapeutic strategy to ameliorate AD.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.