Mitochondrial pathways of copper neurotoxicity: focus on mitochondrial dynamics and mitophagy.

IF 3.5 3区 医学 Q2 NEUROSCIENCES Frontiers in Molecular Neuroscience Pub Date : 2024-12-05 eCollection Date: 2024-01-01 DOI:10.3389/fnmol.2024.1504802
Michael Aschner, Anatoly V Skalny, Rongzhu Lu, Airton C Martins, Yousef Tizabi, Sergey V Nekhoroshev, Abel Santamaria, Anton I Sinitskiy, Alexey A Tinkov
{"title":"Mitochondrial pathways of copper neurotoxicity: focus on mitochondrial dynamics and mitophagy.","authors":"Michael Aschner, Anatoly V Skalny, Rongzhu Lu, Airton C Martins, Yousef Tizabi, Sergey V Nekhoroshev, Abel Santamaria, Anton I Sinitskiy, Alexey A Tinkov","doi":"10.3389/fnmol.2024.1504802","DOIUrl":null,"url":null,"abstract":"<p><p>Copper (Cu) is essential for brain development and function, yet its overload induces neuronal damage and contributes to neurodegeneration and other neurological disorders. Multiple studies demonstrated that Cu neurotoxicity is associated with mitochondrial dysfunction, routinely assessed by reduction of mitochondrial membrane potential. Nonetheless, the role of alterations of mitochondrial dynamics in brain mitochondrial dysfunction induced by Cu exposure is still debatable. Therefore, the objective of the present narrative review was to discuss the role of mitochondrial dysfunction in Cu-induced neurotoxicity with special emphasis on its influence on brain mitochondrial fusion and fission, as well as mitochondrial clearance by mitophagy. Existing data demonstrate that, in addition to mitochondrial electron transport chain inhibition, membrane damage, and mitochondrial reactive oxygen species (ROS) overproduction, Cu overexposure inhibits mitochondrial fusion by down-regulation of Opa1, Mfn1, and Mfn2 expression, while promoting mitochondrial fission through up-regulation of Drp1. It has been also demonstrated that Cu exposure induces PINK1/Parkin-dependent mitophagy in brain cells, that is considered a compensatory response to Cu-induced mitochondrial dysfunction. However, long-term high-dose Cu exposure impairs mitophagy, resulting in accumulation of dysfunctional mitochondria. Cu-induced inhibition of mitochondrial biogenesis due to down-regulation of PGC-1α further aggravates mitochondrial dysfunction in brain. Studies from non-brain cells corroborate these findings, also offering additional evidence that dysregulation of mitochondrial dynamics and mitophagy may be involved in Cu-induced damage in brain. Finally, Cu exposure induces cuproptosis in brain cells due mitochondrial proteotoxic stress, that may also contribute to neuronal damage and pathogenesis of certain brain diseases. Based on these findings, it is assumed that development of mitoprotective agents, specifically targeting mechanisms of mitochondrial quality control, would be useful for prevention of neurotoxic effects of Cu overload.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1504802"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655512/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2024.1504802","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Copper (Cu) is essential for brain development and function, yet its overload induces neuronal damage and contributes to neurodegeneration and other neurological disorders. Multiple studies demonstrated that Cu neurotoxicity is associated with mitochondrial dysfunction, routinely assessed by reduction of mitochondrial membrane potential. Nonetheless, the role of alterations of mitochondrial dynamics in brain mitochondrial dysfunction induced by Cu exposure is still debatable. Therefore, the objective of the present narrative review was to discuss the role of mitochondrial dysfunction in Cu-induced neurotoxicity with special emphasis on its influence on brain mitochondrial fusion and fission, as well as mitochondrial clearance by mitophagy. Existing data demonstrate that, in addition to mitochondrial electron transport chain inhibition, membrane damage, and mitochondrial reactive oxygen species (ROS) overproduction, Cu overexposure inhibits mitochondrial fusion by down-regulation of Opa1, Mfn1, and Mfn2 expression, while promoting mitochondrial fission through up-regulation of Drp1. It has been also demonstrated that Cu exposure induces PINK1/Parkin-dependent mitophagy in brain cells, that is considered a compensatory response to Cu-induced mitochondrial dysfunction. However, long-term high-dose Cu exposure impairs mitophagy, resulting in accumulation of dysfunctional mitochondria. Cu-induced inhibition of mitochondrial biogenesis due to down-regulation of PGC-1α further aggravates mitochondrial dysfunction in brain. Studies from non-brain cells corroborate these findings, also offering additional evidence that dysregulation of mitochondrial dynamics and mitophagy may be involved in Cu-induced damage in brain. Finally, Cu exposure induces cuproptosis in brain cells due mitochondrial proteotoxic stress, that may also contribute to neuronal damage and pathogenesis of certain brain diseases. Based on these findings, it is assumed that development of mitoprotective agents, specifically targeting mechanisms of mitochondrial quality control, would be useful for prevention of neurotoxic effects of Cu overload.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜神经毒性的线粒体途径:关注线粒体动力学和线粒体自噬。
铜(Cu)对大脑发育和功能至关重要,但它的过量会导致神经元损伤,并导致神经变性和其他神经系统疾病。多项研究表明,铜神经毒性与线粒体功能障碍有关,可通过线粒体膜电位降低进行常规评估。尽管如此,线粒体动力学改变在铜暴露引起的脑线粒体功能障碍中的作用仍然存在争议。因此,本综述的目的是讨论线粒体功能障碍在cu诱导的神经毒性中的作用,特别强调其对脑线粒体融合和裂变以及线粒体自噬清除的影响。现有数据表明,除了线粒体电子传递链抑制、膜损伤和线粒体活性氧(ROS)过量产生外,Cu过度暴露还通过下调Opa1、Mfn1和Mfn2表达抑制线粒体融合,同时通过上调Drp1促进线粒体裂变。也有研究表明,Cu暴露诱导脑细胞中的PINK1/帕金森依赖性线粒体自噬,这被认为是对Cu诱导的线粒体功能障碍的代偿反应。然而,长期高剂量铜暴露会损害线粒体自噬,导致功能失调线粒体的积累。铜诱导的PGC-1α下调对线粒体生物发生的抑制进一步加重了脑内线粒体功能障碍。来自非脑细胞的研究证实了这些发现,也提供了线粒体动力学和线粒体自噬失调可能参与cu诱导的脑损伤的额外证据。最后,由于线粒体蛋白毒性应激,铜暴露诱导脑细胞铜变性,这也可能导致神经元损伤和某些脑部疾病的发病机制。基于这些发现,假设开发线粒体保护剂,特别是针对线粒体质量控制机制,将有助于预防Cu过载的神经毒性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
2.10%
发文量
669
审稿时长
14 weeks
期刊介绍: Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.
期刊最新文献
Uncovering novel KCC2 regulatory motifs through a comprehensive transposon-based mutant library. Novel strategies targeting mitochondria-lysosome contact sites for the treatment of neurological diseases. Editorial: Oxytosis/ferroptosis: unraveling the mechanisms and its multifaceted role in neurodegenerative diseases. Neurotherapeutic impact of vanillic acid and ibudilast on the cuprizone model of multiple sclerosis. Serum metabolomic signatures of patients with rare neurogenetic diseases: an insight into potential biomarkers and treatment targets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1