Recent Advances in 4D Printing: A Review of Current Smart Materials, Technologies, and Drug Delivery Systems.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current pharmaceutical design Pub Date : 2024-12-19 DOI:10.2174/0113816128341715241216060613
Rabinarayan Parhi, Anuj Garg
{"title":"Recent Advances in 4D Printing: A Review of Current Smart Materials, Technologies, and Drug Delivery Systems.","authors":"Rabinarayan Parhi, Anuj Garg","doi":"10.2174/0113816128341715241216060613","DOIUrl":null,"url":null,"abstract":"<p><p>Research on shape memory materials (SMM) or smart materials, along with advancements in printing technology, has transformed three-dimensional (3D) printing into what we now refer to as 4D printing. In this context, the addition of time as a fourth dimension enhances 3D printing. 4D printing involves the creation of 3D-printed objects that can change their shapes into complex geometries when influenced by external stimuli such as temperature, light, or pH over time. Currently, the use of smart materials in 4D printing is being explored extensively across various fields, including automotive, wearable electronics, soft robotics, food, mechatronics, textiles, biomedicine, and pharmaceuticals. A particular focus is on designing and fabricating smart drug delivery systems (DDS). This review discusses the evolution of 3D printing into 4D printing, highlighting the differences between the two. It covers the history and fundamentals of 4D printing, the integration of machine learning in 4D printing, and the types of materials used, such as stimuli-responsive materials (SRMs), hydrogels, liquid crystal elastomers, and active composites. Moreover, it presents various 4D printing techniques. Additionally, the review highlights several smart DDS that have been fabricated using 4D printing techniques. These include tablets, capsules, grippers, scaffolds, robots, hydrogels, microneedles, stents, bandages, dressings, and other devices aimed at esophageal retention, gastro-retention, and intravesical DDS. Lastly, it elucidates the current limitations and future directions of 4D printing.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128341715241216060613","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Research on shape memory materials (SMM) or smart materials, along with advancements in printing technology, has transformed three-dimensional (3D) printing into what we now refer to as 4D printing. In this context, the addition of time as a fourth dimension enhances 3D printing. 4D printing involves the creation of 3D-printed objects that can change their shapes into complex geometries when influenced by external stimuli such as temperature, light, or pH over time. Currently, the use of smart materials in 4D printing is being explored extensively across various fields, including automotive, wearable electronics, soft robotics, food, mechatronics, textiles, biomedicine, and pharmaceuticals. A particular focus is on designing and fabricating smart drug delivery systems (DDS). This review discusses the evolution of 3D printing into 4D printing, highlighting the differences between the two. It covers the history and fundamentals of 4D printing, the integration of machine learning in 4D printing, and the types of materials used, such as stimuli-responsive materials (SRMs), hydrogels, liquid crystal elastomers, and active composites. Moreover, it presents various 4D printing techniques. Additionally, the review highlights several smart DDS that have been fabricated using 4D printing techniques. These include tablets, capsules, grippers, scaffolds, robots, hydrogels, microneedles, stents, bandages, dressings, and other devices aimed at esophageal retention, gastro-retention, and intravesical DDS. Lastly, it elucidates the current limitations and future directions of 4D printing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
4D 打印的最新进展:当前智能材料、技术和药物输送系统综述》。
形状记忆材料(SMM)或智能材料的研究,以及打印技术的进步,已经将三维(3D)打印转变为我们现在所说的4D打印。在这种情况下,增加时间作为第四个维度增强了3D打印。4D打印涉及创建3d打印对象,当受到温度、光或pH值等外部刺激的影响时,这些对象可以将其形状改变为复杂的几何形状。目前,智能材料在4D打印中的应用正在广泛探索,包括汽车、可穿戴电子产品、软机器人、食品、机电一体化、纺织、生物医药和制药等各个领域。一个特别的重点是设计和制造智能药物输送系统(DDS)。这篇综述讨论了3D打印到4D打印的演变,突出了两者之间的差异。它涵盖了4D打印的历史和基础知识,机器学习在4D打印中的集成,以及使用的材料类型,如刺激响应材料(SRMs),水凝胶,液晶弹性体和活性复合材料。此外,还介绍了各种4D打印技术。此外,该综述还重点介绍了几种使用4D打印技术制造的智能DDS。这些包括片剂、胶囊、夹持器、支架、机器人、水凝胶、微针、支架、绷带、敷料和其他用于食管保留、胃保留和膀胱内DDS的设备。最后,阐述了目前4D打印的局限性和未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
期刊最新文献
Fabrication of Mastic Gum Resin Tethered Phospholipid Nanocarriers for the Evaluation and Enhancement of Anti-inflammatory and Anti-bacterial Effects. Advancements in Managing Schizophrenia through Classical Approaches, Mechanisms, and Deep Brain Stimulation. Mesenchymal Stem Cell-conditioned Medium Attenuated CoCl2-induced Injury of Renal Tubular Epithelial Cells by Inhibiting NCOA1, HIF-1α, and Sox9. 3',4'-Dihydroxy Flavonol (DiOHF) Exerting a Positive Effect on Neurogenesis and Retinal Damage in Experimental Brain Ischemia-Reperfusion of Rats. Crosstalk: Biochemical Signatures and Clinical Implications in Rare Hereditary Hemolytic Anemias (Hereditary Spherocytosis).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1