Crosstalk between prolactin, insulin-like growth factors, and thyroid hormones in feather growth regulation in neonatal chick wings.

IF 2.1 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM General and comparative endocrinology Pub Date : 2024-12-17 DOI:10.1016/j.ygcen.2024.114657
Yuri Nozawa, Ayako Okamura, Hibiki Fukuchi, Masamichi Shinohara, Sayaka Aizawa, Sakae Takeuchi
{"title":"Crosstalk between prolactin, insulin-like growth factors, and thyroid hormones in feather growth regulation in neonatal chick wings.","authors":"Yuri Nozawa, Ayako Okamura, Hibiki Fukuchi, Masamichi Shinohara, Sayaka Aizawa, Sakae Takeuchi","doi":"10.1016/j.ygcen.2024.114657","DOIUrl":null,"url":null,"abstract":"<p><p>The elongation of primary feathers in neonatal chicks is delayed by the late-feathering K gene located on the Z chromosome. We recently found that the K gene slows feather growth by reducing the number of functional prolactin (PRL) receptor (PRLR) dimers. In this study, we investigated the molecular mechanisms by which PRL promotes feather elongation. RT-qPCR and immunohistochemistry analyses revealed that PRLRs are predominantly localized in the pulp rather than in the epidermal layer of the feather follicle. Treatment of primary cultured feather pulp cells with PRL increased the expression of mRNAs for insulin-like growth factors (IGFs; IGF-1 and IGF-2) and type 2 deiodinase (DIO2). Furthermore, treatments with IGF-1 and triiodothyronine (T3) reciprocally enhanced the expression of mRNAs for DIO2 and IGFs. Additionally, BrdU staining in neonatal chicks showed that T3 promoted cell proliferation in both the epidermal layer and pulp cells, while this effect was suppressed by an IGF-1 receptor (IGF1R) inhibitor. These findings suggest a novel model in which PRL upregulates IGFs and DIO2 in feather pulp cells, creating a positive feedback loop between IGFs and T3, ultimately leading to the promotion of cell proliferation in both the epidermal layer and the pulp cells by IGFs. This is the first report proposing crosstalk between PRL, thyroid hormone (TH), and IGFs in feather follicles.</p>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":" ","pages":"114657"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General and comparative endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ygcen.2024.114657","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The elongation of primary feathers in neonatal chicks is delayed by the late-feathering K gene located on the Z chromosome. We recently found that the K gene slows feather growth by reducing the number of functional prolactin (PRL) receptor (PRLR) dimers. In this study, we investigated the molecular mechanisms by which PRL promotes feather elongation. RT-qPCR and immunohistochemistry analyses revealed that PRLRs are predominantly localized in the pulp rather than in the epidermal layer of the feather follicle. Treatment of primary cultured feather pulp cells with PRL increased the expression of mRNAs for insulin-like growth factors (IGFs; IGF-1 and IGF-2) and type 2 deiodinase (DIO2). Furthermore, treatments with IGF-1 and triiodothyronine (T3) reciprocally enhanced the expression of mRNAs for DIO2 and IGFs. Additionally, BrdU staining in neonatal chicks showed that T3 promoted cell proliferation in both the epidermal layer and pulp cells, while this effect was suppressed by an IGF-1 receptor (IGF1R) inhibitor. These findings suggest a novel model in which PRL upregulates IGFs and DIO2 in feather pulp cells, creating a positive feedback loop between IGFs and T3, ultimately leading to the promotion of cell proliferation in both the epidermal layer and the pulp cells by IGFs. This is the first report proposing crosstalk between PRL, thyroid hormone (TH), and IGFs in feather follicles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
General and comparative endocrinology
General and comparative endocrinology 医学-内分泌学与代谢
CiteScore
5.60
自引率
7.40%
发文量
120
审稿时长
2 months
期刊介绍: General and Comparative Endocrinology publishes articles concerned with the many complexities of vertebrate and invertebrate endocrine systems at the sub-molecular, molecular, cellular and organismal levels of analysis.
期刊最新文献
Stress Axis: Molecular and Cellular Regulation of the HPI/HPA Axis. Corticosterone, lactate, and circulating leukocyte responses of free-ranging cottonmouth snakes (Agkistrodon piscivorus) vary with the duration and nature of the acute stressor. Crosstalk between prolactin, insulin-like growth factors, and thyroid hormones in feather growth regulation in neonatal chick wings. Neuromodulation in the fish brain for reproductive success. A newly characterized CFSH gene in sex chromosomes is associated with growth instead of sexual development in the prawn Macrobrachium rosenbergii.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1