A novel inhibitory strategy of Leishmania major using Kluyveromyces lactis and Saccharomyces cerevisiae killer toxins.

IF 2.5 4区 生物学 Q3 MICROBIOLOGY Future microbiology Pub Date : 2025-02-01 Epub Date: 2024-12-20 DOI:10.1080/17460913.2024.2443329
Azadeh Zolfaghari, Keivan Beheshti-Maal, Ali Mohammad Ahadi, Ramesh Monajemi
{"title":"A novel inhibitory strategy of <i>Leishmania major</i> using <i>Kluyveromyces lactis</i> and <i>Saccharomyces cerevisiae</i> killer toxins.","authors":"Azadeh Zolfaghari, Keivan Beheshti-Maal, Ali Mohammad Ahadi, Ramesh Monajemi","doi":"10.1080/17460913.2024.2443329","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Leishmaniasis is a globally prevalent parasitic disease that has drawn significant attention. Killer yeasts offer a novel biological control method, presenting a potential alternative for treating leishmaniasis. This study evaluates the antileishmanial activity of <i>Kluyveromyces lactis</i> and <i>Saccharomyces cerevisiae</i> killer toxins against <i>Leishmania major</i>.</p><p><strong>Materials & methods: </strong>Killer yeasts were isolated using the Well method. The genes encoding K2 and K.L killer toxins were identified by PCR, and the toxins were purified via SDS-PAGE. Antileishmanial and cytotoxic effects on <i>L. major</i> promastigotes and amastigotes were evaluated using the MTT assay.</p><p><strong>Results: </strong>The first killer isolate was identified as <i>Saccharomyces cerevisiae</i> ZBAM (GenBank accession: OQ376749.1) and the second as <i>Kluyveromyces lactis</i> ZBAM (GenBank accession: OQ401036.1). IC50 values of K2 and K.L toxins against <i>L. major</i> promastigotes were significantly lower than Glucantime and Amphotericin B. The EC50 values at 24 hours for Glucantime, K2, and K.L were 11.83 ± 0.02 μg/ml, 2.35 ± 0.01 μg/ml, and 3.23 ± 0.03 μg/ml, respectively. The EC50 values for K2 and K.L against <i>L. major</i> amastigotes were also lower than Glucantime.</p><p><strong>Conclusion: </strong>This is the first report of the antileishmanial effects of K2 and K.L toxins against <i>L. major</i>, suggesting these yeasts as promising candidates for biological leishmaniasis treatment.</p>","PeriodicalId":12773,"journal":{"name":"Future microbiology","volume":" ","pages":"189-199"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812320/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17460913.2024.2443329","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Leishmaniasis is a globally prevalent parasitic disease that has drawn significant attention. Killer yeasts offer a novel biological control method, presenting a potential alternative for treating leishmaniasis. This study evaluates the antileishmanial activity of Kluyveromyces lactis and Saccharomyces cerevisiae killer toxins against Leishmania major.

Materials & methods: Killer yeasts were isolated using the Well method. The genes encoding K2 and K.L killer toxins were identified by PCR, and the toxins were purified via SDS-PAGE. Antileishmanial and cytotoxic effects on L. major promastigotes and amastigotes were evaluated using the MTT assay.

Results: The first killer isolate was identified as Saccharomyces cerevisiae ZBAM (GenBank accession: OQ376749.1) and the second as Kluyveromyces lactis ZBAM (GenBank accession: OQ401036.1). IC50 values of K2 and K.L toxins against L. major promastigotes were significantly lower than Glucantime and Amphotericin B. The EC50 values at 24 hours for Glucantime, K2, and K.L were 11.83 ± 0.02 μg/ml, 2.35 ± 0.01 μg/ml, and 3.23 ± 0.03 μg/ml, respectively. The EC50 values for K2 and K.L against L. major amastigotes were also lower than Glucantime.

Conclusion: This is the first report of the antileishmanial effects of K2 and K.L toxins against L. major, suggesting these yeasts as promising candidates for biological leishmaniasis treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用乳酸克鲁维酵母菌和酿酒酵母杀手毒素抑制大利什曼病菌的新策略。
目的:利什曼病是一种全球流行的寄生虫病,引起了极大的关注。杀手酵母提供了一种新的生物防治方法,为治疗利什曼病提供了一种潜在的替代方法。本研究评价了乳酸克卢维菌和酿酒酵母杀伤毒素对利什曼原虫的杀伤活性。材料与方法:采用Well法分离杀伤酵母。利用PCR鉴定了K2和K.L杀伤毒素的编码基因,并利用SDS-PAGE对毒素进行了纯化。用MTT法评价了对L. major promastigotes和amastigotes的抗利什曼原虫和细胞毒作用。结果:第一株杀伤分离株为酿酒酵母菌ZBAM (GenBank登录号:OQ376749.1),第二株为乳酸克卢维菌ZBAM (GenBank登录号:OQ401036.1)。K2和K.L毒素对L. major promastigotes的IC50值显著低于葡聚糖酶和两性霉素b, 24 h EC50值分别为11.83±0.02 μg/ml、2.35±0.01 μg/ml和3.23±0.03 μg/ml。K2和K.L对L. major amastigotes的EC50值也低于葡聚糖。结论:本文首次报道了K2和K.L毒素对L. major的抗利什曼病作用,提示这两种酵母菌是生物治疗利什曼病的有希望的候选菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Future microbiology
Future microbiology 生物-微生物学
CiteScore
4.90
自引率
3.20%
发文量
134
审稿时长
6-12 weeks
期刊介绍: Future Microbiology delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this increasingly important and vast area of research.
期刊最新文献
Interplay of gut microbiota in Kawasaki disease: role of gut microbiota and potential treatment strategies. Cefepime-enmetazobactam: first approved cefepime-β- lactamase inhibitor combination for multi-drug resistant Enterobacterales. Plain language summary: efficacy and safety of gepotidacin, a new oral antibiotic, compared with nitrofurantoin, a commonly used oral antibiotic, for treating uncomplicated urinary tract infection. Correction. Efficacy of nitrofuran derivatives against biofilms of Histoplasma capsulatum strains and their in vivo toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1