Alan M Rice, Evan P Troendle, Stephen J Bridgett, Behnam Firoozi Nejad, Jennifer M McKinley, Declan T Bradley, Derek J Fairley, Connor G G Bamford, Timofey Skvortsov, David A Simpson
{"title":"SARS-CoV-2 introductions to the island of Ireland: a phylogenetic and geospatiotemporal study of infection dynamics.","authors":"Alan M Rice, Evan P Troendle, Stephen J Bridgett, Behnam Firoozi Nejad, Jennifer M McKinley, Declan T Bradley, Derek J Fairley, Connor G G Bamford, Timofey Skvortsov, David A Simpson","doi":"10.1186/s13073-024-01409-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ireland's COVID-19 response combined extensive SARS-CoV-2 testing to estimate incidence, with whole genome sequencing (WGS) for genome surveillance. As an island with two political jurisdictions-Northern Ireland (NI) and Republic of Ireland (RoI)-and access to detailed passenger travel data, Ireland provides a unique setting to study virus introductions and evaluate public health measures. Using a substantial Irish genomic dataset alongside global data from GISAID, this study aimed to trace the introduction and spread of SARS-CoV-2 across the island.</p><p><strong>Methods: </strong>We recursively searched for 29,518 SARS-CoV-2 genome sequences collected in Ireland from March 2020 to June 2022 within the global SARS-CoV-2 phylogenetic tree and identified clusters based on shared last common non-Irish ancestors. A maximum parsimony approach was used to assign a likely country of origin to each cluster. The geographic locations and collection dates of the samples in each introduction cluster were used to map the spread of the virus across Ireland. Downsampling was used to model the impact of varying levels of sequencing and normalisation for population permitted comparison between jurisdictions.</p><p><strong>Results: </strong>Six periods spanning the early introductions and the emergence of Alpha, Delta, and Omicron variants were studied in detail. Among 4439 SARS-CoV-2 introductions to Ireland, 2535 originated in England, with additional cases largely from the rest of Great Britain, United States of America, and Northwestern Europe. Introduction clusters ranged in size from a single to thousands of cases. Introductions were concentrated in the densely populated Dublin and Belfast areas, with many clusters spreading islandwide. Genetic phylogeny was able to effectively trace localised transmission patterns. Introduction rates were similar in NI and RoI for most variants, except for Delta, which was more frequently introduced to NI.</p><p><strong>Conclusions: </strong>Tracking individual introduction events enables detailed modelling of virus spread patterns and clearer assessment of the effectiveness of control measures. Stricter travel restrictions in RoI likely reduced Delta introductions but not infection rates, which were similar across jurisdictions. Local and global sequencing levels influence the information available from phylogenomic analyses and we describe an approach to assess the ability of a chosen WGS level to detect virus introductions.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"150"},"PeriodicalIF":10.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-024-01409-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ireland's COVID-19 response combined extensive SARS-CoV-2 testing to estimate incidence, with whole genome sequencing (WGS) for genome surveillance. As an island with two political jurisdictions-Northern Ireland (NI) and Republic of Ireland (RoI)-and access to detailed passenger travel data, Ireland provides a unique setting to study virus introductions and evaluate public health measures. Using a substantial Irish genomic dataset alongside global data from GISAID, this study aimed to trace the introduction and spread of SARS-CoV-2 across the island.
Methods: We recursively searched for 29,518 SARS-CoV-2 genome sequences collected in Ireland from March 2020 to June 2022 within the global SARS-CoV-2 phylogenetic tree and identified clusters based on shared last common non-Irish ancestors. A maximum parsimony approach was used to assign a likely country of origin to each cluster. The geographic locations and collection dates of the samples in each introduction cluster were used to map the spread of the virus across Ireland. Downsampling was used to model the impact of varying levels of sequencing and normalisation for population permitted comparison between jurisdictions.
Results: Six periods spanning the early introductions and the emergence of Alpha, Delta, and Omicron variants were studied in detail. Among 4439 SARS-CoV-2 introductions to Ireland, 2535 originated in England, with additional cases largely from the rest of Great Britain, United States of America, and Northwestern Europe. Introduction clusters ranged in size from a single to thousands of cases. Introductions were concentrated in the densely populated Dublin and Belfast areas, with many clusters spreading islandwide. Genetic phylogeny was able to effectively trace localised transmission patterns. Introduction rates were similar in NI and RoI for most variants, except for Delta, which was more frequently introduced to NI.
Conclusions: Tracking individual introduction events enables detailed modelling of virus spread patterns and clearer assessment of the effectiveness of control measures. Stricter travel restrictions in RoI likely reduced Delta introductions but not infection rates, which were similar across jurisdictions. Local and global sequencing levels influence the information available from phylogenomic analyses and we describe an approach to assess the ability of a chosen WGS level to detect virus introductions.
期刊介绍:
Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.