Fabio De-Giorgio, Michele Guerreri, Roberto Gatta, Eva Bergamin, Vittorio De Vita, Matteo Mancino, Luca Boldrini, Evis Sala, Vincenzo L Pascali
{"title":"Exploring radiomic features of lateral cerebral ventricles in postmortem CT for postmortem interval estimation.","authors":"Fabio De-Giorgio, Michele Guerreri, Roberto Gatta, Eva Bergamin, Vittorio De Vita, Matteo Mancino, Luca Boldrini, Evis Sala, Vincenzo L Pascali","doi":"10.1007/s00414-024-03396-9","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study is to investigate the potential of radiomic features extracted from postmortem computed tomography (PMCT) scans of the lateral cerebral ventricles (LCVs) to provide information on the time since death, or postmortem interval (PMI), a critical aspect of forensic medicine. Periodic PMCT scans, referred to as \"sequential scans\", were obtained from twelve corpses with known times of death, ranging from 5.5 to 273 h postmortem. Radiomics features were then extracted from the LCVs, and a mixed-effect model, specifically designed for sequential data, was employed to assess the association between feature values and PMI. Four model variants were fitted to the data to identify the best functional form to explain the relationship between the variables. Significant associations were observed for features, the most significant being the median Hounsfield Units (HU) within the LCVs (p < 9.47 × 10⁻⁹), LCVs surface area (p < 4.69 × 10⁻⁶), L-major axis (p < 2.17 × 10⁻⁵), L-minor axis (p < 1.30 × 10⁻⁴), and HU entropy (p < 4.16 × 10⁻⁴). Our findings align with previous studies, supporting a logarithmic model for PMI-related changes in LCV volume and mean HU intensity value. This study highlights the potential of PMCT-based radiomics as source of complementary information that could be integrated into existing methods for PMI estimation. Our results support the application of a quantitative imaging approach in forensic investigations.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-024-03396-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study is to investigate the potential of radiomic features extracted from postmortem computed tomography (PMCT) scans of the lateral cerebral ventricles (LCVs) to provide information on the time since death, or postmortem interval (PMI), a critical aspect of forensic medicine. Periodic PMCT scans, referred to as "sequential scans", were obtained from twelve corpses with known times of death, ranging from 5.5 to 273 h postmortem. Radiomics features were then extracted from the LCVs, and a mixed-effect model, specifically designed for sequential data, was employed to assess the association between feature values and PMI. Four model variants were fitted to the data to identify the best functional form to explain the relationship between the variables. Significant associations were observed for features, the most significant being the median Hounsfield Units (HU) within the LCVs (p < 9.47 × 10⁻⁹), LCVs surface area (p < 4.69 × 10⁻⁶), L-major axis (p < 2.17 × 10⁻⁵), L-minor axis (p < 1.30 × 10⁻⁴), and HU entropy (p < 4.16 × 10⁻⁴). Our findings align with previous studies, supporting a logarithmic model for PMI-related changes in LCV volume and mean HU intensity value. This study highlights the potential of PMCT-based radiomics as source of complementary information that could be integrated into existing methods for PMI estimation. Our results support the application of a quantitative imaging approach in forensic investigations.
期刊介绍:
The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.