Comparison of different dental age estimation methods with deep learning: Willems, Cameriere-European, London Atlas.

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL International Journal of Legal Medicine Pub Date : 2025-02-19 DOI:10.1007/s00414-025-03452-y
Betul Sen Yavuz, Omer Ekmekcioglu, Handan Ankarali
{"title":"Comparison of different dental age estimation methods with deep learning: Willems, Cameriere-European, London Atlas.","authors":"Betul Sen Yavuz, Omer Ekmekcioglu, Handan Ankarali","doi":"10.1007/s00414-025-03452-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to compare dental age estimates using Willems, Cameriere-Europe, London Atlas, and deep learning methods on panoramic radiographs of Turkish children. The dental ages of 1169 children (613 girls, 556 boys) who agreed to participate in the study were determined by 4 different methods. The Convolutional Neural Network models examined were implemented in the TensorFlow library. Simple correlations and intraclass correlations between children's chronological ages and dental age estimates were calculated. Goodness-of-fit criteria were calculated based on the errors in dental age estimates and the smallest possible values for the Akaike Information Criterion, the Bayesian-Schwarz Criterion, the Root Mean Squared Error, and the coefficient of determination value. Simple correlations were observed between dental age and chronological ages in all four methods (p < 0.001). However, there was a statistically significant difference between the average dental age estimates of methods other than the London Atlas for boys (p = 0.179) and the four methods for girls (p < 0.001). The intra-class correlation between chronological age and methods was examined, and almost perfect agreement was observed in all methods. Moreover, the predictions of all methods were similar to each other in each gender and overall (Intraclass correlation [ICC<sub>W</sub>] = 0.92, ICC<sub>CE</sub>=0.94, ICC<sub>LA</sub>=0.95, ICC<sub>DL</sub>=0.89 for all children). The London Atlas is only suitable for boys in predicting the age of Turkish children, Willems, Cameriere-Europe formulas, and deep learning methods need revision.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-025-03452-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to compare dental age estimates using Willems, Cameriere-Europe, London Atlas, and deep learning methods on panoramic radiographs of Turkish children. The dental ages of 1169 children (613 girls, 556 boys) who agreed to participate in the study were determined by 4 different methods. The Convolutional Neural Network models examined were implemented in the TensorFlow library. Simple correlations and intraclass correlations between children's chronological ages and dental age estimates were calculated. Goodness-of-fit criteria were calculated based on the errors in dental age estimates and the smallest possible values for the Akaike Information Criterion, the Bayesian-Schwarz Criterion, the Root Mean Squared Error, and the coefficient of determination value. Simple correlations were observed between dental age and chronological ages in all four methods (p < 0.001). However, there was a statistically significant difference between the average dental age estimates of methods other than the London Atlas for boys (p = 0.179) and the four methods for girls (p < 0.001). The intra-class correlation between chronological age and methods was examined, and almost perfect agreement was observed in all methods. Moreover, the predictions of all methods were similar to each other in each gender and overall (Intraclass correlation [ICCW] = 0.92, ICCCE=0.94, ICCLA=0.95, ICCDL=0.89 for all children). The London Atlas is only suitable for boys in predicting the age of Turkish children, Willems, Cameriere-Europe formulas, and deep learning methods need revision.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.50%
发文量
165
审稿时长
1 months
期刊介绍: The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.
期刊最新文献
A bioinformatic method to predict the 5' ends of primer sequences in multiple STR kits. Comparison of different dental age estimation methods with deep learning: Willems, Cameriere-European, London Atlas. Radiologic assessment of third molar development and cervical vertebral maturation to validate age of majority in a Mexican population. Determination of DNA recovery from human teeth exposed to various acids. Developmental validation of the AGCU EX-38 typing system: a comprehensive forensic tool for enhanced genetic identification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1