Fluorescence of various buried fresh and fresh-frozen-thawed tissue types up until the point of active decay: a human taphonomy study.

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL International Journal of Legal Medicine Pub Date : 2024-12-20 DOI:10.1007/s00414-024-03387-w
Emmanuelle Charlot, Anas Gasser, Roelof-Jan Oostra, Maurice C G Aalders, Tristan Krap
{"title":"Fluorescence of various buried fresh and fresh-frozen-thawed tissue types up until the point of active decay: a human taphonomy study.","authors":"Emmanuelle Charlot, Anas Gasser, Roelof-Jan Oostra, Maurice C G Aalders, Tristan Krap","doi":"10.1007/s00414-024-03387-w","DOIUrl":null,"url":null,"abstract":"<p><p>Forensic taphonomy is the study of postmortem changes of human remains for the purpose of answering legal investigative questions. Many variables can affect the pattern and rate of decomposition of remains, posing challenges for taphonomic studies and estimation of the postmortem interval. Given the gap in knowledge regarding the suitability of using frozen remains to extrapolate conclusions to fresh material, investigating the effects of freeze-thaw cycles followed by burial on human remains is vital for forensic practice and taphonomic research. This study explored the impact of a freeze-thaw cycle and subsequent burial on human tissue decomposition under semi-controlled field conditions. Fresh and fresh-frozen-thawed hands were buried at the Amsterdam Research Initiative for Sub-surface Taphonomy and Anthropology for 31.7 to 340.4 accumulated degree days. Decomposition was assessed using fluorescence measurements targeting protein and fluorescent oxidation products, and broader excitation-emission matrix measurements in skin, adipose, and muscle tissue. Decomposition trends varied primarily by treatment group: fresh samples generally aligned with expectations that protein levels would decrease over time while fluorescent oxidation products increased, whereas fresh-frozen samples deviated significantly from these expectations. Significant differences were found between protein and fluorescent oxidation products levels of fresh and fresh-frozen tissue at corresponding time points, indicating this method's potential in determining sample state. However, fluorophore peak monitoring in excitation-emission matrices did not prove useful in establishing decomposition trends or potentially distinguishing between sample states. Despite limitations inherent to pilot and human taphonomy studies, this study clearly demonstrates that differences exist in the decomposition of fresh and fresh-frozen tissue, and that these trends vary slightly by tissue type. We therefore conclude that frozen material cannot be considered a proper substitute for fresh tissue regarding taphonomic processes, and the methods used in this study show promise in being used to differentiate between pre-decomposition treatments.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-024-03387-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Forensic taphonomy is the study of postmortem changes of human remains for the purpose of answering legal investigative questions. Many variables can affect the pattern and rate of decomposition of remains, posing challenges for taphonomic studies and estimation of the postmortem interval. Given the gap in knowledge regarding the suitability of using frozen remains to extrapolate conclusions to fresh material, investigating the effects of freeze-thaw cycles followed by burial on human remains is vital for forensic practice and taphonomic research. This study explored the impact of a freeze-thaw cycle and subsequent burial on human tissue decomposition under semi-controlled field conditions. Fresh and fresh-frozen-thawed hands were buried at the Amsterdam Research Initiative for Sub-surface Taphonomy and Anthropology for 31.7 to 340.4 accumulated degree days. Decomposition was assessed using fluorescence measurements targeting protein and fluorescent oxidation products, and broader excitation-emission matrix measurements in skin, adipose, and muscle tissue. Decomposition trends varied primarily by treatment group: fresh samples generally aligned with expectations that protein levels would decrease over time while fluorescent oxidation products increased, whereas fresh-frozen samples deviated significantly from these expectations. Significant differences were found between protein and fluorescent oxidation products levels of fresh and fresh-frozen tissue at corresponding time points, indicating this method's potential in determining sample state. However, fluorophore peak monitoring in excitation-emission matrices did not prove useful in establishing decomposition trends or potentially distinguishing between sample states. Despite limitations inherent to pilot and human taphonomy studies, this study clearly demonstrates that differences exist in the decomposition of fresh and fresh-frozen tissue, and that these trends vary slightly by tissue type. We therefore conclude that frozen material cannot be considered a proper substitute for fresh tissue regarding taphonomic processes, and the methods used in this study show promise in being used to differentiate between pre-decomposition treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.50%
发文量
165
审稿时长
1 months
期刊介绍: The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.
期刊最新文献
Exploring radiomic features of lateral cerebral ventricles in postmortem CT for postmortem interval estimation. Fluorescence of various buried fresh and fresh-frozen-thawed tissue types up until the point of active decay: a human taphonomy study. Exploration and application of microorganisms related to the inference of the time since deposition (TsD) in semen and blood stains. Construction of the time since deposition (TsD) model in saliva stains with 16S rRNA full-length sequencing technology and microbial markers. Expression of RIPK-1 and S-100B in traumatic brain injury- exploring a forensic cases series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1