Hypoxia-guided treatment planning for lung cancer with dose painting by numbers.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Applied Clinical Medical Physics Pub Date : 2024-12-20 DOI:10.1002/acm2.14609
Yazhou Li, Yuanyuan Ma, Jieyan Wu, Hui Zhang, Hongyi Cai, Xinguo Liu, Qiang Li
{"title":"Hypoxia-guided treatment planning for lung cancer with dose painting by numbers.","authors":"Yazhou Li, Yuanyuan Ma, Jieyan Wu, Hui Zhang, Hongyi Cai, Xinguo Liu, Qiang Li","doi":"10.1002/acm2.14609","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor hypoxia significantly impacts the efficacy of radiotherapy. Recent developments in the technique of dose painting by numbers (DPBN) promise to improve the tumor control probability (TCP) in conventional radiotherapy for hypoxic cancer. The study initially combined the DPBN method with hypoxia-guided dose distribution optimization to overcome hypoxia for lung cancers and evaluated the effectiveness and appropriateness for clinical use of the DPBN plans. <sup>18</sup>F-FMISO PET-CT scans from 13 lung cancer patients were retrospectively employed in our study to make hypoxia-guided radiotherapy. In the clinic, TCP and normal tissue complication probability (NTCP) derived from the DPBN plans in comparison to conventional intensity modulated radiation therapy (IMRT) plans were evaluated. Additionally, in order to investigate the improved clinical suitability, the robustness of DPBN plans in response to potential patient positioning errors and radiation resistance variations throughout the treatment course was assessed. The DPBN approach, employing voxelized prescription doses, led to an average increase of 24.47% in TCP, alongside a reduction of 1.83% in NTCP, compared to the conventional radiotherapy treatment plans. Regarding the robustness of the DPBN plans, it was observed that positional uncertainties were limited to 2 mm and radiosensitivity deviations were within 4%. The lung NTCP showed a 0.05% increase when the isocenter was moved by 3 mm in any direction, suggesting that the DPBN plan meets clinical acceptability criteria. Our study has shown that the DPBN technique has significant potential as an innovative approach to enhance the efficacy of radiotherapy for lung cancer with hypoxic regions.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e14609"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.14609","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor hypoxia significantly impacts the efficacy of radiotherapy. Recent developments in the technique of dose painting by numbers (DPBN) promise to improve the tumor control probability (TCP) in conventional radiotherapy for hypoxic cancer. The study initially combined the DPBN method with hypoxia-guided dose distribution optimization to overcome hypoxia for lung cancers and evaluated the effectiveness and appropriateness for clinical use of the DPBN plans. 18F-FMISO PET-CT scans from 13 lung cancer patients were retrospectively employed in our study to make hypoxia-guided radiotherapy. In the clinic, TCP and normal tissue complication probability (NTCP) derived from the DPBN plans in comparison to conventional intensity modulated radiation therapy (IMRT) plans were evaluated. Additionally, in order to investigate the improved clinical suitability, the robustness of DPBN plans in response to potential patient positioning errors and radiation resistance variations throughout the treatment course was assessed. The DPBN approach, employing voxelized prescription doses, led to an average increase of 24.47% in TCP, alongside a reduction of 1.83% in NTCP, compared to the conventional radiotherapy treatment plans. Regarding the robustness of the DPBN plans, it was observed that positional uncertainties were limited to 2 mm and radiosensitivity deviations were within 4%. The lung NTCP showed a 0.05% increase when the isocenter was moved by 3 mm in any direction, suggesting that the DPBN plan meets clinical acceptability criteria. Our study has shown that the DPBN technique has significant potential as an innovative approach to enhance the efficacy of radiotherapy for lung cancer with hypoxic regions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
19.00%
发文量
331
审稿时长
3 months
期刊介绍: Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission. JACMP will publish: -Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500. -Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed. -Technical Notes: These should be no longer than 3000 words, including key references. -Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents. -Book Reviews: The editorial office solicits Book Reviews. -Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics. -Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic
期刊最新文献
Calibration and volunteer testing of a prototype contactless respiratory motion detection system based on laser tracking. Development and application of a novel scintillation gel-based 3D dosimetry system for radiotherapy. Hypoxia-guided treatment planning for lung cancer with dose painting by numbers. Machine learning based radiomics model to predict radiotherapy induced cardiotoxicity in breast cancer. Optimization of target grouping in distributive stereotactic radiosurgery using the excel evolutionary solver.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1