Fantastic proteins and where to find them - histones, in the nucleus and beyond.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Journal of cell science Pub Date : 2024-12-15 Epub Date: 2024-12-20 DOI:10.1242/jcs.262071
Johanna Grinat, Noah P Shriever, Maria A Christophorou
{"title":"Fantastic proteins and where to find them - histones, in the nucleus and beyond.","authors":"Johanna Grinat, Noah P Shriever, Maria A Christophorou","doi":"10.1242/jcs.262071","DOIUrl":null,"url":null,"abstract":"<p><p>Animal genomes are packaged into chromatin, a highly dynamic macromolecular structure of DNA and histone proteins organised into nucleosomes. This accommodates packaging of lengthy genomic sequences within the physical confines of the nucleus while also enabling precise regulation of access to genetic information. However, histones existed before chromatin and have lesser-known functions beyond genome regulation. Most notably, histones are potent antimicrobial agents, and the release of chromatin to the extracellular space is a defence mechanism nearly as ancient and widespread as chromatin itself. Histone sequences have changed very little throughout evolution, suggesting the possibility that some of their 'non-canonical' functions are at play in parallel or in concert with their genome regulatory functions. In this Review, we take an evolutionary perspective of histone, nuclear chromatin and extracellular chromatin biology and describe the known extranuclear and extracellular functions of histones. We detail molecular mechanisms of chromatin release and extracellular chromatin sensing, and we discuss their roles in physiology and disease. Finally, we present evidence and give a perspective on the potential of extracellular histones to act as bioactive, cell modulatory factors.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"137 24","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.262071","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Animal genomes are packaged into chromatin, a highly dynamic macromolecular structure of DNA and histone proteins organised into nucleosomes. This accommodates packaging of lengthy genomic sequences within the physical confines of the nucleus while also enabling precise regulation of access to genetic information. However, histones existed before chromatin and have lesser-known functions beyond genome regulation. Most notably, histones are potent antimicrobial agents, and the release of chromatin to the extracellular space is a defence mechanism nearly as ancient and widespread as chromatin itself. Histone sequences have changed very little throughout evolution, suggesting the possibility that some of their 'non-canonical' functions are at play in parallel or in concert with their genome regulatory functions. In this Review, we take an evolutionary perspective of histone, nuclear chromatin and extracellular chromatin biology and describe the known extranuclear and extracellular functions of histones. We detail molecular mechanisms of chromatin release and extracellular chromatin sensing, and we discuss their roles in physiology and disease. Finally, we present evidence and give a perspective on the potential of extracellular histones to act as bioactive, cell modulatory factors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
奇妙的蛋白质以及在哪里可以找到它们——组蛋白,在细胞核内外。
动物基因组被包装成染色质,染色质是一种高度动态的DNA和组蛋白大分子结构,被组织成核小体。这可以在细胞核的物理范围内容纳长基因组序列的包装,同时也可以精确调节获取遗传信息的途径。然而,组蛋白在染色质之前就存在了,并且除了基因组调控之外,还有一些鲜为人知的功能。最值得注意的是,组蛋白是有效的抗菌剂,将染色质释放到细胞外空间是一种防御机制,几乎和染色质本身一样古老和广泛。组蛋白序列在整个进化过程中变化很小,这表明它们的一些“非规范”功能可能与它们的基因组调节功能并行或协同发挥作用。在这篇综述中,我们从组蛋白、核染色质和细胞外染色质生物学的进化角度,描述了已知的组蛋白的核外和细胞外功能。我们详细介绍了染色质释放和细胞外染色质传感的分子机制,并讨论了它们在生理和疾病中的作用。最后,我们提出了证据,并给出了细胞外组蛋白作为生物活性细胞调节因子的潜力的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
期刊最新文献
Activation of the mitochondrial unfolded protein response regulates the dynamic formation of stress granules. Fis1 regulates mitochondrial morphology, bioenergetics and removal of mitochondrial DNA damage in irradiated glioblastoma cells. Mitochondria-plasma membrane contact sites regulate the ER-mitochondria encounter structure. Dachsous is a key player in epithelial wound closure by modulating cell shape changes and tissue mechanics. Potential ER tubular lumen-sensing intrinsically disordered regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1