{"title":"AMPK Activates Cellulase Secretion in Penicillium funiculosum by Downregulating P-HOG1 MAPK Levels.","authors":"Anmoldeep Randhawa, Tulika Sinha, Maitreyee Das, Syed Shams Yazdani","doi":"10.1002/jobm.202400658","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulase production for hydrolyzing plant cell walls is energy-intensive in filamentous fungi during nutrient scarcity. AMP-activated protein kinase (AMPK), encoded by snf1, is known to be the nutrient and energy sensor in eukaryotes. Previous studies on AMPK identified its role in alternate carbon utilization in pathogenic fungi. However, the precise role of AMPK in cellulase production remains elusive. In the present study, we employed gene-deletion analysis, quantitative proteomics and chemical-genetic approaches to investigate the role of AMPK in cellulase synthesis in Penicillium funiculosum. Gene-deletion analysis revealed that AMPK does not promote transcription and translation but is essential for cellulase secretion in a calcium-dependent manner. Proteomic analysis of the snf1-deleted (Δsnf1) strain confirmed trapped cellulase inside the mycelia and identified HOG1 MAPK activation as the most significant Ca<sup>2+</sup>-induced signaling event during carbon stress in Δsnf1. Western blot analysis analysis revealed that the phosphorylated HOG1 (P-HOG1)/HOG1 MAPK ratio maintained by Ca<sup>2+</sup>-signaling/Ca<sup>2+</sup>-activated AMPK, respectively, forms a secretion checkpoint for cellulases, and disturbing this equilibrium blocks cellulase secretion. The proteomic analysis also indicated a massive increase in mTORC1-activated anabolic pathways during carbon stress in Δsnf1. Our study suggests that AMPK maintains homeostasis by acting as a global repressor during carbon stress.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400658"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400658","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulase production for hydrolyzing plant cell walls is energy-intensive in filamentous fungi during nutrient scarcity. AMP-activated protein kinase (AMPK), encoded by snf1, is known to be the nutrient and energy sensor in eukaryotes. Previous studies on AMPK identified its role in alternate carbon utilization in pathogenic fungi. However, the precise role of AMPK in cellulase production remains elusive. In the present study, we employed gene-deletion analysis, quantitative proteomics and chemical-genetic approaches to investigate the role of AMPK in cellulase synthesis in Penicillium funiculosum. Gene-deletion analysis revealed that AMPK does not promote transcription and translation but is essential for cellulase secretion in a calcium-dependent manner. Proteomic analysis of the snf1-deleted (Δsnf1) strain confirmed trapped cellulase inside the mycelia and identified HOG1 MAPK activation as the most significant Ca2+-induced signaling event during carbon stress in Δsnf1. Western blot analysis analysis revealed that the phosphorylated HOG1 (P-HOG1)/HOG1 MAPK ratio maintained by Ca2+-signaling/Ca2+-activated AMPK, respectively, forms a secretion checkpoint for cellulases, and disturbing this equilibrium blocks cellulase secretion. The proteomic analysis also indicated a massive increase in mTORC1-activated anabolic pathways during carbon stress in Δsnf1. Our study suggests that AMPK maintains homeostasis by acting as a global repressor during carbon stress.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).