Novel endpoints based on tumor size ratio to support early clinical decision-making in oncology drug-development.

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY Journal of Pharmacokinetics and Pharmacodynamics Pub Date : 2024-12-20 DOI:10.1007/s10928-024-09946-3
Shubhadeep Chakraborty, Kshitij Aggarwal, Marzana Chowdhury, Izumi Hamada, Chuanpu Hu, Anna Kondic, Kaushal Mishra, David Paulucci, Ram Tiwari, Kalyanee Viraswami Appanna, Mariann Micsinai Balan, Arun Kumar
{"title":"Novel endpoints based on tumor size ratio to support early clinical decision-making in oncology drug-development.","authors":"Shubhadeep Chakraborty, Kshitij Aggarwal, Marzana Chowdhury, Izumi Hamada, Chuanpu Hu, Anna Kondic, Kaushal Mishra, David Paulucci, Ram Tiwari, Kalyanee Viraswami Appanna, Mariann Micsinai Balan, Arun Kumar","doi":"10.1007/s10928-024-09946-3","DOIUrl":null,"url":null,"abstract":"<p><p>In oncology drug development, overall response rate (ORR) is commonly used as an early endpoint to assess the clinical benefits of new interventions; however, ORR benefit may not always translate into a long-term clinical benefit such as overall survival (OS). Most of the work on developing endpoints based on tumor growth dynamics relies on empirical validation, leading to a lack of generalizability of the endpoints across indications and therapeutic modalities. Additionally, many of these metrics are model-based and do not use data from all the patients. The objective of this work is to use longitudinal tumor size data and new lesion information (that is, the same information used by the ORR) to develop novel endpoints that can improve early clinical decision-making compared to the ORR. We investigate in this work multiple candidate novel endpoints based on tumor size ratio that utilize longitudinal tumor size data from all the patients regardless of their follow-up, rely only on tumor size and new lesion information, and are model-free. An extensive simulation study is conducted, exploring a wide spectrum of tumor size data and overall survival outcomes by modulating a variety of trial characteristics such as slow vs fast tumor growth, high vs low drug efficacy rates, variability in patients' responses, variations in the number of patients, follow-up periods, new lesion rates and survival curve shapes. The proposed novel endpoints based on tumor size ratio consistently outperform the ORR by having a comparable or higher correlation with the OS. Further, the novel endpoints exhibit superior accuracy compared to the ORR in predicting the long-term OS benefit. Retrospective empirical validation on BMS clinical trials confirms our simulation findings. These findings suggest that the tumor size ratio-based endpoints could replace ORR for early clinical decision-making in oncology drug development.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 1","pages":"9"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09946-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In oncology drug development, overall response rate (ORR) is commonly used as an early endpoint to assess the clinical benefits of new interventions; however, ORR benefit may not always translate into a long-term clinical benefit such as overall survival (OS). Most of the work on developing endpoints based on tumor growth dynamics relies on empirical validation, leading to a lack of generalizability of the endpoints across indications and therapeutic modalities. Additionally, many of these metrics are model-based and do not use data from all the patients. The objective of this work is to use longitudinal tumor size data and new lesion information (that is, the same information used by the ORR) to develop novel endpoints that can improve early clinical decision-making compared to the ORR. We investigate in this work multiple candidate novel endpoints based on tumor size ratio that utilize longitudinal tumor size data from all the patients regardless of their follow-up, rely only on tumor size and new lesion information, and are model-free. An extensive simulation study is conducted, exploring a wide spectrum of tumor size data and overall survival outcomes by modulating a variety of trial characteristics such as slow vs fast tumor growth, high vs low drug efficacy rates, variability in patients' responses, variations in the number of patients, follow-up periods, new lesion rates and survival curve shapes. The proposed novel endpoints based on tumor size ratio consistently outperform the ORR by having a comparable or higher correlation with the OS. Further, the novel endpoints exhibit superior accuracy compared to the ORR in predicting the long-term OS benefit. Retrospective empirical validation on BMS clinical trials confirms our simulation findings. These findings suggest that the tumor size ratio-based endpoints could replace ORR for early clinical decision-making in oncology drug development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
期刊最新文献
Novel endpoints based on tumor size ratio to support early clinical decision-making in oncology drug-development. Translational pharmacokinetic and pharmacodynamic modelling of the anti-ADAMTS-5 NANOBODY® (M6495) using the neo-epitope ARGS as a biomarker. QSP modeling of a transiently inactivating antibody-drug conjugate highlights benefit of short antibody half life. A PopPBPK-RL approach for precision dosing of benazepril in renal impaired patients. Comparison of the power and type 1 error of total score models for drug effect detection in clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1