Adipose tissue as target of environmental toxicants: focus on mitochondrial dysfunction and oxidative inflammation in metabolic dysfunction-associated steatotic liver disease.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2024-12-20 DOI:10.1007/s11010-024-05165-z
Bogdan A Lolescu, Adina V Furdui-Lința, Cosmin A Ilie, Adrian Sturza, Flavia Zară, Danina M Muntean, Alexandru Blidișel, Octavian M Crețu
{"title":"Adipose tissue as target of environmental toxicants: focus on mitochondrial dysfunction and oxidative inflammation in metabolic dysfunction-associated steatotic liver disease.","authors":"Bogdan A Lolescu, Adina V Furdui-Lința, Cosmin A Ilie, Adrian Sturza, Flavia Zară, Danina M Muntean, Alexandru Blidișel, Octavian M Crețu","doi":"10.1007/s11010-024-05165-z","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity, diabetes, and their cardiovascular and hepatic comorbidities are alarming public health issues of the twenty-first century, which share mitochondrial dysfunction, oxidative stress, and chronic inflammation as common pathophysiological mechanisms. An increasing body of evidence links the combined exposure to multiple environmental toxicants with the occurrence and severity of metabolic diseases. Endocrine disruptors (EDs) are ubiquitous chemicals or mixtures with persistent deleterious effects on the living organisms beyond the endocrine system impairment; in particular, those known as metabolism-disrupting chemicals (MDCs), increase the risk of the metabolic pathologies in adult organism or its progeny. Being largely lipophilic, MDCs mainly target the adipose tissue and elicit mitochondrial dysfunction by interfering with mitochondrial bioenergetics, biogenesis, dynamics and/or other functions. Plastics, when broken down into micro- and nano-plastics (MNPs), have been detected in several human tissues, including the liver. The harmful interplay between inflammatory and redox processes, which mutually interact in a positive feed-back loop, hence the term oxidative inflammation (\"OxInflammation\"), occurs both at systemic and organ level. In both liver and adipose tissue, oxinflammation contributes to the progression of the metabolic dysfunction-associated steatotic liver disease (MASLD). Moreover, it has been reported that individuals with MASLD may be more susceptible to the harmful effects of toxicants (mainly, those related to mitochondria) and that chronic exposure to EDs/MDCs or MNPs may play a role in the development of the disease. While liver has been systematically investigated as major target organ for ambient chemicals, surprisingly, less information is available in the literature with respect to the adipose tissue. In this narrative review, we delve into the current literature on the most studied environmental toxicants (bisphenols, polychlorinated biphenyls, phthalates, tolylfluanid and tributyltin, per-fluoroalkyl and polyfluoroalkyl substances, heavy metals and MNPs), summarize their deleterious effects on adipose tissue, and address the role of dysregulated mitochondria and oxinflammation, particularly in the setting of MASLD.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05165-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity, diabetes, and their cardiovascular and hepatic comorbidities are alarming public health issues of the twenty-first century, which share mitochondrial dysfunction, oxidative stress, and chronic inflammation as common pathophysiological mechanisms. An increasing body of evidence links the combined exposure to multiple environmental toxicants with the occurrence and severity of metabolic diseases. Endocrine disruptors (EDs) are ubiquitous chemicals or mixtures with persistent deleterious effects on the living organisms beyond the endocrine system impairment; in particular, those known as metabolism-disrupting chemicals (MDCs), increase the risk of the metabolic pathologies in adult organism or its progeny. Being largely lipophilic, MDCs mainly target the adipose tissue and elicit mitochondrial dysfunction by interfering with mitochondrial bioenergetics, biogenesis, dynamics and/or other functions. Plastics, when broken down into micro- and nano-plastics (MNPs), have been detected in several human tissues, including the liver. The harmful interplay between inflammatory and redox processes, which mutually interact in a positive feed-back loop, hence the term oxidative inflammation ("OxInflammation"), occurs both at systemic and organ level. In both liver and adipose tissue, oxinflammation contributes to the progression of the metabolic dysfunction-associated steatotic liver disease (MASLD). Moreover, it has been reported that individuals with MASLD may be more susceptible to the harmful effects of toxicants (mainly, those related to mitochondria) and that chronic exposure to EDs/MDCs or MNPs may play a role in the development of the disease. While liver has been systematically investigated as major target organ for ambient chemicals, surprisingly, less information is available in the literature with respect to the adipose tissue. In this narrative review, we delve into the current literature on the most studied environmental toxicants (bisphenols, polychlorinated biphenyls, phthalates, tolylfluanid and tributyltin, per-fluoroalkyl and polyfluoroalkyl substances, heavy metals and MNPs), summarize their deleterious effects on adipose tissue, and address the role of dysregulated mitochondria and oxinflammation, particularly in the setting of MASLD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为环境毒物靶标的脂肪组织:关注代谢功能障碍相关脂肪肝中的线粒体功能障碍和氧化炎症。
肥胖症、糖尿病及其心血管和肝脏并发症是二十一世纪令人担忧的公共卫生问题,它们的共同病理生理机制是线粒体功能障碍、氧化应激和慢性炎症。越来越多的证据表明,多种环境毒物的综合暴露与代谢性疾病的发生和严重程度有关。内分泌干扰物(EDs)是一种无处不在的化学物质或混合物,除了对内分泌系统造成损害外,还对生物体产生持续的有害影响;尤其是那些被称为干扰新陈代谢的化学物质(MDCs),会增加成年生物体或其后代出现新陈代谢疾病的风险。由于主要是亲脂性的,MDCs 主要以脂肪组织为目标,通过干扰线粒体的生物能、生物生成、动力学和/或其他功能,引起线粒体功能障碍。塑料在分解成微塑料和纳米塑料(MNPs)后,已在包括肝脏在内的多个人体组织中被检测到。炎症过程和氧化还原过程之间存在有害的相互作用,两者相互影响,形成正反馈循环,因此被称为氧化性炎症("OxInflammation")。在肝脏和脂肪组织中,氧化性炎症都会导致代谢功能障碍相关性脂肪性肝病(MASLD)的恶化。此外,有报道称,患有代谢功能障碍相关性脂肪性肝病的人可能更容易受到毒物(主要是与线粒体有关的毒物)的有害影响,而长期暴露于 EDs/MDCs 或 MNPs 可能在该病的发展中起作用。肝脏作为环境化学物质的主要靶器官已得到系统研究,但令人惊讶的是,有关脂肪组织的文献资料却较少。在这篇叙事性综述中,我们深入研究了当前研究最多的环境毒物(双酚、多氯联苯、邻苯二甲酸盐、甲苯氟酰胺和三丁基锡、全氟烷基和多氟烷基物质、重金属和 MNPs),总结了它们对脂肪组织的有害影响,并探讨了线粒体失调和氧化炎症的作用,尤其是在 MASLD 的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
Advancing Parkinson's diagnosis: seed amplification assay for α-synuclein detection in minimally invasive samples. Circular RNAs: key players in tumor immune evasion. Correction to: Autophagy-related gene BECN1 single nucleotide polymorphisms in diseases. Crocin and gallic acid attenuate ethanol-induced mitochondrial dysfunction via suppression of ROS formation and inhibition of mitochondrial swelling in pancreatic mitochondria. Selenium: 48-year journey of global clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1