Listeria monocytogenes colonises established multispecies biofilms and resides within them without altering biofilm composition or gene expression.

IF 6.1 1区 生物学 Q1 MICROBIOLOGY Microbiological research Pub Date : 2025-03-01 Epub Date: 2024-12-11 DOI:10.1016/j.micres.2024.127997
Eva M Voglauer, Lauren V Alteio, Nadja Pracser, Sarah Thalguter, Narciso M Quijada, Martin Wagner, Kathrin Rychli
{"title":"Listeria monocytogenes colonises established multispecies biofilms and resides within them without altering biofilm composition or gene expression.","authors":"Eva M Voglauer, Lauren V Alteio, Nadja Pracser, Sarah Thalguter, Narciso M Quijada, Martin Wagner, Kathrin Rychli","doi":"10.1016/j.micres.2024.127997","DOIUrl":null,"url":null,"abstract":"<p><p>Listeria (L.) monocytogenes can survive for extended periods in the food producing environment. Here, biofilms possibly provide a niche for long-term survival due to their protective nature against environmental fluctuations and disinfectants. This study examined the behaviour of a L. monocytogenes ST121 isolate in a multispecies biofilm composed of Pseudomonas (P.) fragi, Brochothrix (B.) thermosphacta, and Carnobacterium (C.) maltaromaticum, previously isolated from a meat processing facility. The composition of the biofilm community and matrix, and transcriptional activity were analysed. L. monocytogenes colonised the multispecies biofilm, accounting for 6.4 % of all total biofilm cells after six hours. Transcriptomic analysis revealed 127 significantly up-regulated L. monocytogenes genes compared to the inoculum, including motility, chemotaxis, iron, and protein transport related genes. When comparing the differentially expressed transcripts within the multispecies biofilm with and without L. monocytogenes, only a cadmium/zinc exporting ATPase gene in C. maltaromaticum was significantly upregulated, while the other 9313 genes in the biofilm community showed no significant differential expression. We further monitored biofilm development over time (6, 24 hours and 7 days). P. fragi remained the dominant species, while L. monocytogenes was able to survive in the multispecies biofilm accounting for 2.4 % of total biofilm cells after 7 days, without any significant changes in its abundance. The presence of L. monocytogenes did neither alter the biofilm community nor its matrix composition (amount of extracellular DNA, carbohydrates, and protein). Our data indicate that L. monocytogenes resides in multispecies biofilms, potentially increasing survival against cleaning and disinfection in food processing environments, supporting persistence.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"127997"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.micres.2024.127997","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Listeria (L.) monocytogenes can survive for extended periods in the food producing environment. Here, biofilms possibly provide a niche for long-term survival due to their protective nature against environmental fluctuations and disinfectants. This study examined the behaviour of a L. monocytogenes ST121 isolate in a multispecies biofilm composed of Pseudomonas (P.) fragi, Brochothrix (B.) thermosphacta, and Carnobacterium (C.) maltaromaticum, previously isolated from a meat processing facility. The composition of the biofilm community and matrix, and transcriptional activity were analysed. L. monocytogenes colonised the multispecies biofilm, accounting for 6.4 % of all total biofilm cells after six hours. Transcriptomic analysis revealed 127 significantly up-regulated L. monocytogenes genes compared to the inoculum, including motility, chemotaxis, iron, and protein transport related genes. When comparing the differentially expressed transcripts within the multispecies biofilm with and without L. monocytogenes, only a cadmium/zinc exporting ATPase gene in C. maltaromaticum was significantly upregulated, while the other 9313 genes in the biofilm community showed no significant differential expression. We further monitored biofilm development over time (6, 24 hours and 7 days). P. fragi remained the dominant species, while L. monocytogenes was able to survive in the multispecies biofilm accounting for 2.4 % of total biofilm cells after 7 days, without any significant changes in its abundance. The presence of L. monocytogenes did neither alter the biofilm community nor its matrix composition (amount of extracellular DNA, carbohydrates, and protein). Our data indicate that L. monocytogenes resides in multispecies biofilms, potentially increasing survival against cleaning and disinfection in food processing environments, supporting persistence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单核细胞增生李斯特菌在已建立的多菌种生物膜中定植并驻留,不会改变生物膜的组成或基因表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiological research
Microbiological research 生物-微生物学
CiteScore
10.90
自引率
6.00%
发文量
249
审稿时长
29 days
期刊介绍: Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.
期刊最新文献
Phototactic signaling network in rod-shaped cyanobacteria: A study on Synechococcus elongatus UTEX 3055. Mechanism and nanotechnological-based therapeutics for tolerance and resistance of bacterial biofilms. Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions. Antimicrobial effect of sulconazole in combination with glucose/trehalose against carbapenem-resistant hypervirulent Klebsiella pneumoniae persisters. Underground fires shape the structure of microbial communities and select for thermophilic bacteria through a temperature gradient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1