首页 > 最新文献

Microbiological research最新文献

英文 中文
Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions.
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-06 DOI: 10.1016/j.micres.2024.127995
Shuxun Liu, Xujie Feng, Hangjia Zhang, Ping Li, Baoru Yang, Qing Gu

This review provides a comprehensive analysis of the intricate architecture of bacterial sensing systems, with a focus on signal transduction mechanisms and their critical roles in microbial physiology. It highlights quorum sensing (QS), quorum quenching (QQ), and quorum sensing interference (QSI) as fundamental processes driving bacterial communication, influencing gene expression, biofilm formation, and interspecies interactions. The analysis explores the importance of diffusible signal factors (DSFs) and secondary messengers such as cAMP and c-di-GMP in modulating microbial behaviors. Additionally, cross-kingdom signaling, where bacterial signals impact host-pathogen dynamics and ecological balance, is systematically reviewed. This review introduces "signalomics", an novel interdisciplinary framework integrating genomics, proteomics, and metabolomics to offer a holistic framework for understanding microbial communication and evolution. These findings hold significant implications for various domains, including food preservation, agriculture, and human health.

{"title":"Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions.","authors":"Shuxun Liu, Xujie Feng, Hangjia Zhang, Ping Li, Baoru Yang, Qing Gu","doi":"10.1016/j.micres.2024.127995","DOIUrl":"10.1016/j.micres.2024.127995","url":null,"abstract":"<p><p>This review provides a comprehensive analysis of the intricate architecture of bacterial sensing systems, with a focus on signal transduction mechanisms and their critical roles in microbial physiology. It highlights quorum sensing (QS), quorum quenching (QQ), and quorum sensing interference (QSI) as fundamental processes driving bacterial communication, influencing gene expression, biofilm formation, and interspecies interactions. The analysis explores the importance of diffusible signal factors (DSFs) and secondary messengers such as cAMP and c-di-GMP in modulating microbial behaviors. Additionally, cross-kingdom signaling, where bacterial signals impact host-pathogen dynamics and ecological balance, is systematically reviewed. This review introduces \"signalomics\", an novel interdisciplinary framework integrating genomics, proteomics, and metabolomics to offer a holistic framework for understanding microbial communication and evolution. These findings hold significant implications for various domains, including food preservation, agriculture, and human health.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"127995"},"PeriodicalIF":6.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Listeria monocytogenes colonises established multispecies biofilms and resides within them without altering biofilm composition or gene expression. 单核细胞增生李斯特菌在已建立的多菌种生物膜中定植并驻留,不会改变生物膜的组成或基因表达。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-11 DOI: 10.1016/j.micres.2024.127997
Eva M Voglauer, Lauren V Alteio, Nadja Pracser, Sarah Thalguter, Narciso M Quijada, Martin Wagner, Kathrin Rychli

Listeria (L.) monocytogenes can survive for extended periods in the food producing environment. Here, biofilms possibly provide a niche for long-term survival due to their protective nature against environmental fluctuations and disinfectants. This study examined the behaviour of a L. monocytogenes ST121 isolate in a multispecies biofilm composed of Pseudomonas (P.) fragi, Brochothrix (B.) thermosphacta, and Carnobacterium (C.) maltaromaticum, previously isolated from a meat processing facility. The composition of the biofilm community and matrix, and transcriptional activity were analysed. L. monocytogenes colonised the multispecies biofilm, accounting for 6.4 % of all total biofilm cells after six hours. Transcriptomic analysis revealed 127 significantly up-regulated L. monocytogenes genes compared to the inoculum, including motility, chemotaxis, iron, and protein transport related genes. When comparing the differentially expressed transcripts within the multispecies biofilm with and without L. monocytogenes, only a cadmium/zinc exporting ATPase gene in C. maltaromaticum was significantly upregulated, while the other 9313 genes in the biofilm community showed no significant differential expression. We further monitored biofilm development over time (6, 24 hours and 7 days). P. fragi remained the dominant species, while L. monocytogenes was able to survive in the multispecies biofilm accounting for 2.4 % of total biofilm cells after 7 days, without any significant changes in its abundance. The presence of L. monocytogenes did neither alter the biofilm community nor its matrix composition (amount of extracellular DNA, carbohydrates, and protein). Our data indicate that L. monocytogenes resides in multispecies biofilms, potentially increasing survival against cleaning and disinfection in food processing environments, supporting persistence.

{"title":"Listeria monocytogenes colonises established multispecies biofilms and resides within them without altering biofilm composition or gene expression.","authors":"Eva M Voglauer, Lauren V Alteio, Nadja Pracser, Sarah Thalguter, Narciso M Quijada, Martin Wagner, Kathrin Rychli","doi":"10.1016/j.micres.2024.127997","DOIUrl":"10.1016/j.micres.2024.127997","url":null,"abstract":"<p><p>Listeria (L.) monocytogenes can survive for extended periods in the food producing environment. Here, biofilms possibly provide a niche for long-term survival due to their protective nature against environmental fluctuations and disinfectants. This study examined the behaviour of a L. monocytogenes ST121 isolate in a multispecies biofilm composed of Pseudomonas (P.) fragi, Brochothrix (B.) thermosphacta, and Carnobacterium (C.) maltaromaticum, previously isolated from a meat processing facility. The composition of the biofilm community and matrix, and transcriptional activity were analysed. L. monocytogenes colonised the multispecies biofilm, accounting for 6.4 % of all total biofilm cells after six hours. Transcriptomic analysis revealed 127 significantly up-regulated L. monocytogenes genes compared to the inoculum, including motility, chemotaxis, iron, and protein transport related genes. When comparing the differentially expressed transcripts within the multispecies biofilm with and without L. monocytogenes, only a cadmium/zinc exporting ATPase gene in C. maltaromaticum was significantly upregulated, while the other 9313 genes in the biofilm community showed no significant differential expression. We further monitored biofilm development over time (6, 24 hours and 7 days). P. fragi remained the dominant species, while L. monocytogenes was able to survive in the multispecies biofilm accounting for 2.4 % of total biofilm cells after 7 days, without any significant changes in its abundance. The presence of L. monocytogenes did neither alter the biofilm community nor its matrix composition (amount of extracellular DNA, carbohydrates, and protein). Our data indicate that L. monocytogenes resides in multispecies biofilms, potentially increasing survival against cleaning and disinfection in food processing environments, supporting persistence.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"127997"},"PeriodicalIF":6.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Etf-3-specific nanobodies to prevent Ehrlichia infection and LNP-mRNA delivery in cellular and murine models.
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-16 DOI: 10.1016/j.micres.2024.128027
Nan Duan, Mingqun Lin, Wenqing Zhang, Qi Yan, Rory C Chien, Khemraj Budachetri, Stephen Denton, Jeffrey Kawahara, Jeffrey Lakritz, Yichen Zhong, Yizhou Dong, Yasuko Rikihisa

Ehrlichia chaffeensis is an obligatory intracellular bacterium that infects monocytes and macrophages and causes human monocytic ehrlichiosis. Ehrlichia translocated factor-3 (Etf-3) is a type IV secretion system effector that binds host-cell ferritin light chain and induces ferritinophagy, thus increasing cellular labile iron pool for Ehrlichia proliferation. To further characterize roles of Etf-3 in Ehrlichia infection, we produced immune libraries of Etf-3-specific nanobodies (Nbs). Based on distinct complementarity-determining region 3 sequences, we identified 16 and 15 families of anti-Etf-3 Nbs that could specifically bind the N- and C-terminal halves of Etf-3, respectively. Transfection with plasmids encoding the anti-Etf-3 Nbs N48 and N51, but not N59, significantly inhibited E. chaffeensis infection in HEK293 cells. All three Nbs colocalized with Etf-3-GFP in co-transfected RF/6A cells, but N48 and N51 had significantly higher binding affinities for recombinant Etf-3. Etf-3-GFP transfection-induced ferritinophagy and endogenous ferritin degradation was abrogated in HEK293 cells co-transfected with N48 or N51, but not with N59. To efficiently express Nbs in the infected host-cell cytoplasm, lipid nanoparticles-encapsulated mRNAs (LNP-mRNAs) encoding N48, N51, or N59 were created for delivery into cells or mice. Incubation of HEK293 cells or inoculation of mice with LNP-mRNA-N48 or LNP-mRNA-N51 significantly inhibited E. chaffeensis infection compared to those with LNP-mRNA-N59 or without LNP-mRNA. Our results demonstrate that Etf-3-specific Nbs delivered via LNP-mRNAs can inhibit Etf-3 functions and Ehrlichia infection.

{"title":"Development of Etf-3-specific nanobodies to prevent Ehrlichia infection and LNP-mRNA delivery in cellular and murine models.","authors":"Nan Duan, Mingqun Lin, Wenqing Zhang, Qi Yan, Rory C Chien, Khemraj Budachetri, Stephen Denton, Jeffrey Kawahara, Jeffrey Lakritz, Yichen Zhong, Yizhou Dong, Yasuko Rikihisa","doi":"10.1016/j.micres.2024.128027","DOIUrl":"10.1016/j.micres.2024.128027","url":null,"abstract":"<p><p>Ehrlichia chaffeensis is an obligatory intracellular bacterium that infects monocytes and macrophages and causes human monocytic ehrlichiosis. Ehrlichia translocated factor-3 (Etf-3) is a type IV secretion system effector that binds host-cell ferritin light chain and induces ferritinophagy, thus increasing cellular labile iron pool for Ehrlichia proliferation. To further characterize roles of Etf-3 in Ehrlichia infection, we produced immune libraries of Etf-3-specific nanobodies (Nbs). Based on distinct complementarity-determining region 3 sequences, we identified 16 and 15 families of anti-Etf-3 Nbs that could specifically bind the N- and C-terminal halves of Etf-3, respectively. Transfection with plasmids encoding the anti-Etf-3 Nbs N48 and N51, but not N59, significantly inhibited E. chaffeensis infection in HEK293 cells. All three Nbs colocalized with Etf-3-GFP in co-transfected RF/6A cells, but N48 and N51 had significantly higher binding affinities for recombinant Etf-3. Etf-3-GFP transfection-induced ferritinophagy and endogenous ferritin degradation was abrogated in HEK293 cells co-transfected with N48 or N51, but not with N59. To efficiently express Nbs in the infected host-cell cytoplasm, lipid nanoparticles-encapsulated mRNAs (LNP-mRNAs) encoding N48, N51, or N59 were created for delivery into cells or mice. Incubation of HEK293 cells or inoculation of mice with LNP-mRNA-N48 or LNP-mRNA-N51 significantly inhibited E. chaffeensis infection compared to those with LNP-mRNA-N59 or without LNP-mRNA. Our results demonstrate that Etf-3-specific Nbs delivered via LNP-mRNAs can inhibit Etf-3 functions and Ehrlichia infection.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"128027"},"PeriodicalIF":6.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions.
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-26 DOI: 10.1016/j.micres.2024.128037
Liyin Zhang, Yao Yin, Si Jin

Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.

{"title":"Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions.","authors":"Liyin Zhang, Yao Yin, Si Jin","doi":"10.1016/j.micres.2024.128037","DOIUrl":"10.1016/j.micres.2024.128037","url":null,"abstract":"<p><p>Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"128037"},"PeriodicalIF":6.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stealth in non-tuberculous mycobacteria: clever challengers to the immune system.
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-25 DOI: 10.1016/j.micres.2024.128039
Zhenghao Wang, Xiurong Sun, Yuli Lin, Yurong Fu, Zhengjun Yi

Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.

{"title":"Stealth in non-tuberculous mycobacteria: clever challengers to the immune system.","authors":"Zhenghao Wang, Xiurong Sun, Yuli Lin, Yurong Fu, Zhengjun Yi","doi":"10.1016/j.micres.2024.128039","DOIUrl":"10.1016/j.micres.2024.128039","url":null,"abstract":"<p><p>Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"128039"},"PeriodicalIF":6.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Identification of metabolites produced by six gut commensal Bacteroidales strains using non-targeted LC-MS/MS metabolite profiling" [Microbiol. Res. 283 (2024) 1-11].
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-18 DOI: 10.1016/j.micres.2024.128023
Maria Victoria Fernandez-Cantos, Ambrin Farizah Babu, Kati Hanhineva, Oscar P Kuipers
{"title":"Corrigendum to \"Identification of metabolites produced by six gut commensal Bacteroidales strains using non-targeted LC-MS/MS metabolite profiling\" [Microbiol. Res. 283 (2024) 1-11].","authors":"Maria Victoria Fernandez-Cantos, Ambrin Farizah Babu, Kati Hanhineva, Oscar P Kuipers","doi":"10.1016/j.micres.2024.128023","DOIUrl":"10.1016/j.micres.2024.128023","url":null,"abstract":"","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":" ","pages":"128023"},"PeriodicalIF":6.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ratio of reactive oxygen and nitrogen species determines the type of cell death that bacteria undergo. 活性氧和氮的比例决定了细菌细胞死亡的类型。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-09 DOI: 10.1016/j.micres.2024.127986
Athanasios Nikolaou, Manuel Salvador, Ian Wright, Thomas Wantock, Gavin Sandison, Thomas Harle, Daniela Carta, Jorge Gutierrez-Merino

Reactive oxygen and nitrogen species (RONS) are emerging as a novel antibacterial strategy to combat the alarming increase in antimicrobial resistance (AMR). RONS can inhibit bacterial growth through reactions with cellular molecules, compromising vital biological functions and leading to cell death. While their mechanisms of action have been studied, many remain unclear, especially in biologically relevant environments. In this study, we exposed Gram-positive and Gram-negative bacteria to varying RONS ratios, mimicking what microbes may naturally encounter. A ratio in favour of RNS induced membrane depolarization and pore formation, resulting in an irreversible bactericidal effect. By contrast, ROS predominance caused membrane permeabilization and necrotic-like responses, leading to biofilm formation. Furthermore, bacterial cells exposed to more RNS than ROS activated metabolic processes associated with anaerobic respiration, DNA & cell wall/membrane repair, and cell signalling. Our findings suggest that the combination of ROS and RNS can be an effective alternative to inhibit bacteria, but only under higher RNS levels, as ROS dominance might foster bacterial tolerance, which in the context of AMR could have devastating consequences.

活性氧和氮物种(RONS)正在成为一种新型抗菌策略,以应对抗菌药耐药性(AMR)的惊人增长。RONS 可通过与细胞分子发生反应抑制细菌生长,损害重要的生物功能并导致细胞死亡。虽然已经对其作用机制进行了研究,但许多机制仍不清楚,尤其是在生物相关环境中。在这项研究中,我们将革兰氏阳性和革兰氏阴性细菌暴露在不同的 RONS 比率下,模拟微生物可能自然遇到的情况。有利于 RNS 的比例会诱导膜去极化和孔隙形成,从而产生不可逆的杀菌作用。相比之下,ROS 占主导地位会导致膜渗透和类似坏死的反应,从而形成生物膜。此外,细菌细胞暴露于比 ROS 更多的 RNS 时,会激活与厌氧呼吸、DNA 和细胞壁/膜修复以及细胞信号相关的代谢过程。我们的研究结果表明,ROS 和 RNS 的结合可以成为抑制细菌的有效替代方法,但只有在 RNS 水平较高的情况下才能实现,因为 ROS 占主导地位可能会助长细菌的耐受性,这在 AMR 的背景下可能会产生破坏性后果。
{"title":"The ratio of reactive oxygen and nitrogen species determines the type of cell death that bacteria undergo.","authors":"Athanasios Nikolaou, Manuel Salvador, Ian Wright, Thomas Wantock, Gavin Sandison, Thomas Harle, Daniela Carta, Jorge Gutierrez-Merino","doi":"10.1016/j.micres.2024.127986","DOIUrl":"10.1016/j.micres.2024.127986","url":null,"abstract":"<p><p>Reactive oxygen and nitrogen species (RONS) are emerging as a novel antibacterial strategy to combat the alarming increase in antimicrobial resistance (AMR). RONS can inhibit bacterial growth through reactions with cellular molecules, compromising vital biological functions and leading to cell death. While their mechanisms of action have been studied, many remain unclear, especially in biologically relevant environments. In this study, we exposed Gram-positive and Gram-negative bacteria to varying RONS ratios, mimicking what microbes may naturally encounter. A ratio in favour of RNS induced membrane depolarization and pore formation, resulting in an irreversible bactericidal effect. By contrast, ROS predominance caused membrane permeabilization and necrotic-like responses, leading to biofilm formation. Furthermore, bacterial cells exposed to more RNS than ROS activated metabolic processes associated with anaerobic respiration, DNA & cell wall/membrane repair, and cell signalling. Our findings suggest that the combination of ROS and RNS can be an effective alternative to inhibit bacteria, but only under higher RNS levels, as ROS dominance might foster bacterial tolerance, which in the context of AMR could have devastating consequences.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"127986"},"PeriodicalIF":6.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142829325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of folate biosynthesis defects in Lactiplantibacillus plantarum.
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-14 DOI: 10.1016/j.micres.2024.128014
Jing-Jing Cao, Zhen Liu, Ben-Tao Xiao, Shu-Hong Li, En Yang, Chen-Jian Liu, Xiao-Ran Li

Folate is an essential nutrient for nearly all organisms. While the physiological function and mechanism aspects of folate have been extensively and deeply investigated in Eukarya, related researches in Bacteria remains poorly understood. In this study, we focus on physiological functions of folate in Lactiplantibacillus plantarum by employing a combination of genetics, biochemistry and microscopy approaches. Deletion of the genes folE, folP, or both folE and folK in the folate biosynthesis pathway generated the mutant strains ΔfolE, ΔfolP, and ΔfolKE, respectively. Folate production in ΔfolE, ΔfolKE, and ΔfolP decreased to 51 %, 32 %, and 74 % of the wild-type level, respectively. Simultaneous deletion folE and folK distinctly extended the glutamate tail of folate. These mutants exhibited severely impaired growth capacity under normal conditions. Notably, only ΔfolP cells precipitated in liquid culture. All mutant strains displayed increased cell length, with the extent of elongation correlating to intracellular folate levels. It is noticed that DNA content was increased along with the cell size in deletion mutants. Additionally, 12 % of ΔfolKE cells and 4 % of ΔfolP cells exhibited abnormal lysis, characterized by granular cytoplasm. These findings provide significant insights into the physiological roles of folate in Bacteria.

{"title":"Effects of folate biosynthesis defects in Lactiplantibacillus plantarum.","authors":"Jing-Jing Cao, Zhen Liu, Ben-Tao Xiao, Shu-Hong Li, En Yang, Chen-Jian Liu, Xiao-Ran Li","doi":"10.1016/j.micres.2024.128014","DOIUrl":"10.1016/j.micres.2024.128014","url":null,"abstract":"<p><p>Folate is an essential nutrient for nearly all organisms. While the physiological function and mechanism aspects of folate have been extensively and deeply investigated in Eukarya, related researches in Bacteria remains poorly understood. In this study, we focus on physiological functions of folate in Lactiplantibacillus plantarum by employing a combination of genetics, biochemistry and microscopy approaches. Deletion of the genes folE, folP, or both folE and folK in the folate biosynthesis pathway generated the mutant strains ΔfolE, ΔfolP, and ΔfolKE, respectively. Folate production in ΔfolE, ΔfolKE, and ΔfolP decreased to 51 %, 32 %, and 74 % of the wild-type level, respectively. Simultaneous deletion folE and folK distinctly extended the glutamate tail of folate. These mutants exhibited severely impaired growth capacity under normal conditions. Notably, only ΔfolP cells precipitated in liquid culture. All mutant strains displayed increased cell length, with the extent of elongation correlating to intracellular folate levels. It is noticed that DNA content was increased along with the cell size in deletion mutants. Additionally, 12 % of ΔfolKE cells and 4 % of ΔfolP cells exhibited abnormal lysis, characterized by granular cytoplasm. These findings provide significant insights into the physiological roles of folate in Bacteria.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"128014"},"PeriodicalIF":6.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root exudate-mediated assemblage of rhizo-microbiome enhances Fusarium wilt suppression in chrysanthemum.
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-18 DOI: 10.1016/j.micres.2024.128031
Lin Zhu, Wei Zhou, Jianfei Wang, Jiansheng Guo, Cheng Zhou

Intercropping is emerging as a sustainable strategy to manage soil-borne diseases, yet the underlying mechanisms remain largely elusive. Here, we investigated how intercropping chrysanthemum (Chrysanthemum morifolium) with ginger (Zingiber officinale) suppressed Fusarium wilt and influenced the associated rhizo-microbiome. Chrysanthemum plants in intercropping systems exhibited a marked reduction in wilt severity and greater biomass compared to those grown in monoculture. In contrast, soil sterilization intensified wilt severity and abrogated the benefits of intercropping, highlighting the critical role of soil microbiota. 16S rRNA gene amplicon analysis revealed that intercropping significantly changed the composition and structure of rhizo-bacterial communities, particularly enriching Burkholderia species, which were closely associated with plant growth and disease resistance. Further investigation demonstrated that ginger root exudates, including sinapyl alcohol and 6-gingerol, greatly promoted the proliferation and colonization of Burkholderia sp. in chrysanthemum rhizosphere, conferring the enhanced disease suppression. Metabolomic profiling revealed that ginger root exudates stimulated the release of specific metabolites by chrysanthemum roots, which promoted the growth and biofilm formation of Burkholderia sp. Our findings uncovered the mechanism by which intercropping chrysanthemum with ginger plants modulated the rhizo-microbiome and thereby resulted in the enhanced disease suppression, offering insights into optimizing plant-microbe interactions for improving crop health and productivity.

{"title":"Root exudate-mediated assemblage of rhizo-microbiome enhances Fusarium wilt suppression in chrysanthemum.","authors":"Lin Zhu, Wei Zhou, Jianfei Wang, Jiansheng Guo, Cheng Zhou","doi":"10.1016/j.micres.2024.128031","DOIUrl":"10.1016/j.micres.2024.128031","url":null,"abstract":"<p><p>Intercropping is emerging as a sustainable strategy to manage soil-borne diseases, yet the underlying mechanisms remain largely elusive. Here, we investigated how intercropping chrysanthemum (Chrysanthemum morifolium) with ginger (Zingiber officinale) suppressed Fusarium wilt and influenced the associated rhizo-microbiome. Chrysanthemum plants in intercropping systems exhibited a marked reduction in wilt severity and greater biomass compared to those grown in monoculture. In contrast, soil sterilization intensified wilt severity and abrogated the benefits of intercropping, highlighting the critical role of soil microbiota. 16S rRNA gene amplicon analysis revealed that intercropping significantly changed the composition and structure of rhizo-bacterial communities, particularly enriching Burkholderia species, which were closely associated with plant growth and disease resistance. Further investigation demonstrated that ginger root exudates, including sinapyl alcohol and 6-gingerol, greatly promoted the proliferation and colonization of Burkholderia sp. in chrysanthemum rhizosphere, conferring the enhanced disease suppression. Metabolomic profiling revealed that ginger root exudates stimulated the release of specific metabolites by chrysanthemum roots, which promoted the growth and biofilm formation of Burkholderia sp. Our findings uncovered the mechanism by which intercropping chrysanthemum with ginger plants modulated the rhizo-microbiome and thereby resulted in the enhanced disease suppression, offering insights into optimizing plant-microbe interactions for improving crop health and productivity.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"128031"},"PeriodicalIF":6.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimicrobial effect of sulconazole in combination with glucose/trehalose against carbapenem-resistant hypervirulent Klebsiella pneumoniae persisters.
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-07 DOI: 10.1016/j.micres.2024.128006
Miaomiao Xie, Kaichao Chen, Heng Heng, Edward Wai-Chi Chan, Sheng Chen

The emergence and rapid dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) pose a serious threat to public health. Antibiotic treatment failure of K. pneumoniae infections has been largely attributed to acquisition of antibiotic resistance and bacterial biofilm caused by the presence of antibiotic persisters. There is an urgent need for novel antimicrobial agents or therapy strategies to manage infections caused by these notorious pathogens. In this study, we screened a collection of compounds that can dissipate bacterial proton motive force (PMF) and intermediate metabolites that can suppress antibiotic tolerance, and identified an antifungal drug sulconazole which can act in combination with glucose or trehalose to exert strong antibacterial effect against starvation-induced CR-hvKP persisters. Investigation of underlying mechanisms showed that sulconazole alone caused dissipation of transmembrane PMF, and sulconazole used in combination with glucose or trehalose could significantly inhibit the efflux activity, reduce NADH and ATP levels, and cause intracellular accumulation of reactive oxygen species (ROS) in CR-hvKP persisters, eventually resulting in bacterial cell death. These findings suggest that the sulconazole and glucose/trehalose combination is highly effective in eradicating multidrug-resistant and hypervirulent K. pneumoniae persisters, and may be used in development of a feasible strategy for treatment of chronic and recurrent K. pneumoniae infections.

耐碳青霉烯类药物的高病毒性肺炎克雷伯氏菌(CR-hvKP)的出现和快速传播对公共卫生构成了严重威胁。肺炎克雷伯菌感染的抗生素治疗失败在很大程度上归因于抗生素耐药性的获得和抗生素持续存在导致的细菌生物膜。目前迫切需要新型抗菌药物或治疗策略来控制这些臭名昭著的病原体引起的感染。在这项研究中,我们筛选了一系列能消散细菌质子动力(PMF)的化合物和能抑制抗生素耐受性的中间代谢产物,并确定了一种抗真菌药物舒康唑,它能与葡萄糖或曲哈糖联合作用,对饥饿诱导的 CR-hvKP 顽固病菌产生强大的抗菌效果。对其潜在机制的研究表明,单独使用舒康唑可导致跨膜 PMF 消散,而舒康唑与葡萄糖或曲哈糖联合使用可显著抑制 CR-hvKP 宿主的外排活性,降低 NADH 和 ATP 水平,并导致细胞内活性氧(ROS)积累,最终导致细菌细胞死亡。这些研究结果表明,舒康唑和葡萄糖/曲哈洛糖的组合能高效根除耐多药和高病毒性肺炎克氏菌顽固菌,可用于开发治疗慢性和复发性肺炎克氏菌感染的可行策略。
{"title":"Antimicrobial effect of sulconazole in combination with glucose/trehalose against carbapenem-resistant hypervirulent Klebsiella pneumoniae persisters.","authors":"Miaomiao Xie, Kaichao Chen, Heng Heng, Edward Wai-Chi Chan, Sheng Chen","doi":"10.1016/j.micres.2024.128006","DOIUrl":"10.1016/j.micres.2024.128006","url":null,"abstract":"<p><p>The emergence and rapid dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) pose a serious threat to public health. Antibiotic treatment failure of K. pneumoniae infections has been largely attributed to acquisition of antibiotic resistance and bacterial biofilm caused by the presence of antibiotic persisters. There is an urgent need for novel antimicrobial agents or therapy strategies to manage infections caused by these notorious pathogens. In this study, we screened a collection of compounds that can dissipate bacterial proton motive force (PMF) and intermediate metabolites that can suppress antibiotic tolerance, and identified an antifungal drug sulconazole which can act in combination with glucose or trehalose to exert strong antibacterial effect against starvation-induced CR-hvKP persisters. Investigation of underlying mechanisms showed that sulconazole alone caused dissipation of transmembrane PMF, and sulconazole used in combination with glucose or trehalose could significantly inhibit the efflux activity, reduce NADH and ATP levels, and cause intracellular accumulation of reactive oxygen species (ROS) in CR-hvKP persisters, eventually resulting in bacterial cell death. These findings suggest that the sulconazole and glucose/trehalose combination is highly effective in eradicating multidrug-resistant and hypervirulent K. pneumoniae persisters, and may be used in development of a feasible strategy for treatment of chronic and recurrent K. pneumoniae infections.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"128006"},"PeriodicalIF":6.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microbiological research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1