Genomic, transcriptomic, and metabolomic analyses reveal convergent evolution of oxime biosynthesis in Darwin's orchid.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant Pub Date : 2024-12-18 DOI:10.1016/j.molp.2024.12.010
Kai Jiang, Birger Lindberg Møller, Shaofan Luo, Yu Yang, David R Nelson, Elizabeth Heather Jakobsen Neilson, Joachim Møller Christensen, Kai Hua, Chao Hu, Xinhua Zeng, Mohammed Saddik Motawie, Tao Wan, Guang-Wan Hu, Guy Eric Onjalalaina, Yijiao Wang, Juan Diego Gaitán-Espitia, Zhiwen Wang, Xiao-Yan Xu, Jiamin He, Linying Wang, Yuanyuan Li, Dong-Hui Peng, Siren Lan, Huiming Zhang, Qing-Feng Wang, Zhong-Jian Liu, Wei-Chang Huang
{"title":"Genomic, transcriptomic, and metabolomic analyses reveal convergent evolution of oxime biosynthesis in Darwin's orchid.","authors":"Kai Jiang, Birger Lindberg Møller, Shaofan Luo, Yu Yang, David R Nelson, Elizabeth Heather Jakobsen Neilson, Joachim Møller Christensen, Kai Hua, Chao Hu, Xinhua Zeng, Mohammed Saddik Motawie, Tao Wan, Guang-Wan Hu, Guy Eric Onjalalaina, Yijiao Wang, Juan Diego Gaitán-Espitia, Zhiwen Wang, Xiao-Yan Xu, Jiamin He, Linying Wang, Yuanyuan Li, Dong-Hui Peng, Siren Lan, Huiming Zhang, Qing-Feng Wang, Zhong-Jian Liu, Wei-Chang Huang","doi":"10.1016/j.molp.2024.12.010","DOIUrl":null,"url":null,"abstract":"<p><p>Angraecum sesquipedale, also known as Darwin's orchid, possesses an exceptionally long nectar spur. Charles Darwin predicted the orchid to be pollinated by a hawkmoth with a correspondingly long proboscis, later identified as Xanthopan praedicta. In this plant-pollinator interaction, the A. sesquipedale flower emits a complex blend of scent compounds dominated by diurnally regulated oximes (R<sub>1</sub>R<sub>2</sub>C=N-OH) to attract crepuscular and nocturnal pollinators. The molecular mechanism of oxime biosynthesis remains unclear in orchids. Here, we present the chromosome-level genome of A. sesquipedale. The haploid genome size is 2.10 Gb and represents 19 pseudochromosomes. Cytochrome P450 encoding genes of the CYP79 family known to be involved in oxime biosynthesis in seed plants are not present in the A. sesquipedale genome nor in the genomes of other members of the orchid family. Metabolomic analysis of the A. sesquipedale flower revealed a substantial release of oximes at dusk during the blooming stage. By integrating metabolomic and transcriptomic correlation approaches, flavin-containing monooxygenases (FMOs) encoded by six tandem-repeat genes in the A. sesquipedale genome are identified as catalyzing the formation of oximes present. Further in vitro and in vivo assays confirm the function of FMOs in the oxime biosynthesis. We designate these FMOs as Orchid Oxime Synthases 1-6. The evolutionary aspects related to the CYP79 gene losses and neofunctionalization of FMO-catalyzed biosynthesis of oximes in Darwin's orchid provide new insights into the convergent evolution of biosynthetic pathways.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.12.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Angraecum sesquipedale, also known as Darwin's orchid, possesses an exceptionally long nectar spur. Charles Darwin predicted the orchid to be pollinated by a hawkmoth with a correspondingly long proboscis, later identified as Xanthopan praedicta. In this plant-pollinator interaction, the A. sesquipedale flower emits a complex blend of scent compounds dominated by diurnally regulated oximes (R1R2C=N-OH) to attract crepuscular and nocturnal pollinators. The molecular mechanism of oxime biosynthesis remains unclear in orchids. Here, we present the chromosome-level genome of A. sesquipedale. The haploid genome size is 2.10 Gb and represents 19 pseudochromosomes. Cytochrome P450 encoding genes of the CYP79 family known to be involved in oxime biosynthesis in seed plants are not present in the A. sesquipedale genome nor in the genomes of other members of the orchid family. Metabolomic analysis of the A. sesquipedale flower revealed a substantial release of oximes at dusk during the blooming stage. By integrating metabolomic and transcriptomic correlation approaches, flavin-containing monooxygenases (FMOs) encoded by six tandem-repeat genes in the A. sesquipedale genome are identified as catalyzing the formation of oximes present. Further in vitro and in vivo assays confirm the function of FMOs in the oxime biosynthesis. We designate these FMOs as Orchid Oxime Synthases 1-6. The evolutionary aspects related to the CYP79 gene losses and neofunctionalization of FMO-catalyzed biosynthesis of oximes in Darwin's orchid provide new insights into the convergent evolution of biosynthetic pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因组学、转录组学和代谢组学分析揭示了达尔文兰花的肟生物合成趋同进化。
Angraecum sesquipedale,也被称为达尔文的兰花,拥有特别长的花蜜刺。查尔斯·达尔文曾预言,兰花是由一种具有相应长喙的飞蛾授粉的,后来被鉴定为黄原花。在这种植物与传粉者的相互作用中,a . sesquipedale花释放出一种复杂的气味混合物,以昼夜调节的肟(R1R2C=N-OH)为主,以吸引黄昏和夜间传粉者。兰花中肟生物合成的分子机制尚不清楚。在这里,我们提出了A. sesquipedale的染色体水平基因组。单倍体基因组大小为2.10 Gb,有19条假染色体。已知参与种子植物肟生物合成的CYP79家族的细胞色素P450编码基因不存在于A. sesquipedale基因组中,也不存在于兰科其他成员的基因组中。代谢组学分析显示,在开花阶段的黄昏,大量释放肟。通过整合代谢组学和转录组学相关方法,鉴定了A. sesquipedale基因组中6个串联重复基因编码的含黄素单加氧酶(FMOs)催化了肟的形成。进一步的体外和体内实验证实了FMOs在肟生物合成中的作用。我们将这些FMOs命名为兰花肟合成酶1-6。达尔文兰中CYP79基因丢失和fmo催化的肟类生物合成的新功能化的进化方面为生物合成途径的趋同进化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
期刊最新文献
Cotton2035: From Genomics Research to Optimized Breeding. New molecular chaperone roles for CO2 assimilation in early land plants. NTRC mediates the coupling of chloroplast redox rhythm with nuclear circadian clock in plant cells. A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay. Maize2035: A decadal vision for intelligent maize breeding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1