Root carbon inputs outweigh litter in shaping grassland soil microbiomes and ecosystem multifunctionality.

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY npj Biofilms and Microbiomes Pub Date : 2024-12-19 DOI:10.1038/s41522-024-00616-3
Jiayin Feng, Linlin Wang, Changchun Zhai, Lin Jiang, Yunfeng Yang, Xiaowei Huang, Jingyi Ru, Jian Song, Limei Zhang, Shiqiang Wan
{"title":"Root carbon inputs outweigh litter in shaping grassland soil microbiomes and ecosystem multifunctionality.","authors":"Jiayin Feng, Linlin Wang, Changchun Zhai, Lin Jiang, Yunfeng Yang, Xiaowei Huang, Jingyi Ru, Jian Song, Limei Zhang, Shiqiang Wan","doi":"10.1038/s41522-024-00616-3","DOIUrl":null,"url":null,"abstract":"<p><p>Global change has the potential to alter soil carbon (C) inputs from above- and below-ground sources, with subsequent influences on soil microbial communities and ecological functions. Using data from a 13-year field experiment in a semi-arid grassland, we investigated the effects of litter manipulations and plant removal on soil microbiomes and ecosystem multifunctionality (EMF). Litter addition did not affect soil microbial α-diversity whereas litter removal reduced bacterial and fungal α-diversity due to decreased C substrate supply and soil moisture. By contrast, plant removal led to larger declines in bacterial and fungal α-diversity, lower microbial network stability and complexity. EMF was enhanced by litter addition but largely reduced by plant removal, primarily attributed to the loss of fungal diversity. Our findings underscore the importance of C inputs in shaping soil microbiomes and highlight the dominant role of plant root-derived C inputs in maintaining ecological functions under global change scenarios.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"150"},"PeriodicalIF":7.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00616-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Global change has the potential to alter soil carbon (C) inputs from above- and below-ground sources, with subsequent influences on soil microbial communities and ecological functions. Using data from a 13-year field experiment in a semi-arid grassland, we investigated the effects of litter manipulations and plant removal on soil microbiomes and ecosystem multifunctionality (EMF). Litter addition did not affect soil microbial α-diversity whereas litter removal reduced bacterial and fungal α-diversity due to decreased C substrate supply and soil moisture. By contrast, plant removal led to larger declines in bacterial and fungal α-diversity, lower microbial network stability and complexity. EMF was enhanced by litter addition but largely reduced by plant removal, primarily attributed to the loss of fungal diversity. Our findings underscore the importance of C inputs in shaping soil microbiomes and highlight the dominant role of plant root-derived C inputs in maintaining ecological functions under global change scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在塑造草地土壤微生物群和生态系统多功能性方面,根系碳输入超过了枯落物。
全球变化有可能改变地上和地下来源的土壤碳(C)输入,进而对土壤微生物群落和生态功能产生影响。利用13年半干旱草地的田间试验数据,研究了凋落物处理和植物去除对土壤微生物组和生态系统多功能性的影响。凋落物的添加对土壤微生物α-多样性没有影响,而凋落物的去除由于减少了C基质供给和土壤湿度,降低了细菌和真菌α-多样性。相比之下,植物去除导致细菌和真菌α-多样性大幅下降,微生物网络稳定性和复杂性降低。凋落物的增加增加了EMF,但植物的移除大大降低了EMF,这主要归因于真菌多样性的丧失。我们的研究结果强调了碳输入在塑造土壤微生物组中的重要性,并强调了全球变化情景下植物根源碳输入在维持生态功能方面的主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
期刊最新文献
Regulation of tryptophan-indole metabolic pathway in Porphyromonas gingivalis virulence and microbiota dysbiosis in periodontitis. Microbiome modulation of implant-related infection by a novel miniaturized pulsed electromagnetic field device. Irrigation of the intramedullary channel improves outcome of DAIR in a sheep model. Hypertension inhibition by Dubosiella newyorkensis via reducing pentosidine synthesis. Cardiometabolic disease risk in gorillas is associated with altered gut microbial metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1